Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(14): e034363, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38979786

RESUMEN

BACKGROUND: Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS: Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS: Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Disfunción Ventricular Izquierda , Animales , Tomografía de Emisión de Positrones/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones , Miocardio/patología , Miocardio/metabolismo , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Función Ventricular Izquierda , Masculino , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , Imagen Multimodal/métodos , Colágeno/metabolismo , Remodelación Ventricular , Lisina/análogos & derivados
2.
Front Immunol ; 15: 1371706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650935

RESUMEN

Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.


Asunto(s)
Fibroblastos , Proteínas de Unión al GTP , Hipertensión Pulmonar , Interleucina-6 , Pulmón , Ratones Transgénicos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Piruvato Quinasa , Transglutaminasas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/etiología , Interleucina-6/metabolismo , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Transglutaminasas/metabolismo , Transglutaminasas/genética
4.
Biochem Biophys Res Commun ; 604: 137-143, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303680

RESUMEN

Rho kinase (ROCK) is implicated in the development of pulmonary arterial hypertension (PAH) in which abnormal pulmonary vascular smooth muscle (VSM) contractility and remodeling lead to right heart failure. Pharmacologic ROCK inhibitors block experimental pulmonary hypertension (PH) development in rodents but can have off-target effects and do not distinguish between the two ROCK forms, ROCK1 and ROCK2, encoded by separate genes. An earlier study using gene knock out (KO) in mice indicated that VSM ROCK2 is required for experimental PH development, but the role of ROCK1 is not well understood. Here we investigated the in vivo role of ROCK1 in PH development by generating a VSM-targeted homozygous ROCK1 gene KO mouse strain. Adult control mice exposed to Sugen5416 (Su)/hypoxia treatment to induce PH had significantly increased right ventricular systolic pressures (RVSP) and RV hypertrophy versus normoxic controls. In contrast, Su/hypoxia-exposed VSM ROCK1 KO mice did not exhibit significant RVSP elevation, and RV hypertrophy was blunted. Su/hypoxia-induced pulmonary small vessel muscularization was similarly elevated in both control and VSM ROCK1 KO animals. siRNA-mediated ROCK1 knock-down (KD) in human PAH pulmonary arterial SM cells (PASMC) did not affect cell growth. However, ROCK1 KD led to reduced AKT and MYPT1 signaling in serotonin-treated PAH PASMC. The findings suggest that like VSM ROCK2, VSM ROCK1 actively contributes to PH development, but in distinction acts via nonproliferative pathways to promote hypoxemia, and thus may be a distinct therapeutic target in PH.


Asunto(s)
Hipertensión Arterial Pulmonar , Quinasas Asociadas a rho , Animales , Hipertrofia Ventricular Derecha/genética , Hipoxia/complicaciones , Ratones , Ratones Noqueados , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/fisiología
5.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203295

RESUMEN

A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteína Quinasa CDC2/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proliferación Celular/fisiología , Proteína Forkhead Box M1/genética , Humanos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Remodelación Vascular/genética , Remodelación Vascular/fisiología , Quinasa Tipo Polo 1
6.
Pulm Circ ; 11(3): 20458940211025240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211700

RESUMEN

Abnormalities that characterize pulmonary arterial hypertension include impairment in the structure and function of pulmonary vascular endothelial and smooth muscle cells. Aldosterone levels are elevated in human pulmonary arterial hypertension and in experimental pulmonary hypertension, while inhibition of the aldosterone-binding mineralocorticoid receptor attenuates pulmonary hypertension in multiple animal models. We explored the role of mineralocorticoid receptor in endothelial and smooth muscle cells in using cell-specific mineralocorticoid receptor knockout mice exposed to sugen/hypoxia-induced pulmonary hypertension. Treatment with the mineralocorticoid receptor inhibitor spironolactone significantly reduced right ventricular systolic pressure. However, this is not reproduced by selective mineralocorticoid receptor deletion in smooth muscle cells or endothelial cells. Similarly, spironolactone attenuated the increase in right ventricular cardiomyocyte area independent of vascular mineralocorticoid receptor with no effect on right ventricular weight or interstitial fibrosis. Right ventricular perivascular fibrosis was significantly decreased by spironolactone and this was reproduced by specific deletion of mineralocorticoid receptor from endothelial cells. Endothelial cell-mineralocorticoid receptor deletion attenuated the sugen/hypoxia-induced increase in the leukocyte-adhesion molecule, E-selectin, and collagen IIIA1 in the right ventricle. Spironolactone also significantly reduced pulmonary arteriolar muscularization, independent of endothelial cell-mineralocorticoid receptor or smooth muscle cell-mineralocorticoid receptor. Finally, the degree of pulmonary perivascular inflammation was attenuated by mineralocorticoid receptor antagonism and was fully reproduced by smooth muscle cell-specific mineralocorticoid receptor deletion. These studies demonstrate that in the sugen/hypoxia pulmonary hypertension model, systemic-mineralocorticoid receptor blockade significantly attenuates the disease and that mineralocorticoid receptor has cell-specific effects, with endothelial cell-mineralocorticoid receptor contributing to right ventricular perivascular fibrosis and smooth muscle cell-mineralocorticoid receptor participating in pulmonary vascular inflammation. As mineralocorticoid receptor antagonists are being investigated to treat pulmonary arterial hypertension, these findings support novel mechanisms and potential mineralocorticoid receptor targets that mediate therapeutic benefits in patients.

7.
FASEB J ; 34(1): 930-944, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914588

RESUMEN

The pathophysiology of pulmonary hypertension (PH) and heart failure (HF) includes fibrogenic remodeling associated with the loss of pulmonary arterial (PA) and cardiac compliance. We and others have previously identified transglutaminase 2 (TG2) as a participant in adverse fibrogenic remodeling. However, little is known about the biologic mechanisms that regulate TG2 function. We examined physiological mouse models of experimental PH, HF, and type 1 diabetes that are associated with altered glucose metabolism/glycolysis and report here that TG2 expression and activity are elevated in pulmonary and cardiac tissues under all these conditions. We additionally used PA adventitial fibroblasts to test the hypothesis that TG2 is an intermediary between enhanced tissue glycolysis and fibrogenesis. Our in vitro results show that glycolytic enzymes and TG2 are upregulated in fibroblasts exposed to high glucose, which stimulates cellular glycolysis as measured by Seahorse analysis. We examined the relationship of TG2 to a terminal glycolytic enzyme, pyruvate kinase M2 (PKM2), and found that PKM2 regulates glucose-induced TG2 expression and activity as well as fibrogenesis. Our studies further show that TG2 inhibition blocks glucose-induced fibrogenesis and cell proliferation. Our findings support a novel role for glycolysis-mediated TG2 induction and tissue fibrosis associated with experimental PH, HF, and hyperglycemia.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucólisis , Hipertensión Pulmonar/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proliferación Celular , Fibroblastos/metabolismo , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Glutamina Gamma Glutamiltransferasa 2 , Arteria Pulmonar/metabolismo , Piruvato Quinasa/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Regulación hacia Arriba , Proteínas de Unión a Hormona Tiroide
10.
Arthritis Res Ther ; 20(1): 185, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115106

RESUMEN

BACKGROUND: Systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) is one of the leading causes of death in SSc. Identification of a serum-based proteomic diagnostic biomarker for SSc-PAH would allow for rapid non-invasive screening and could positively impact patient survival. Identification and validation of novel proteins could potentially facilitate the identification of SSc-PAH, and might also point to important protein mediators in pathogenesis. METHODS: Thirteen treatment-naïve SSc-PAH patients had serum collected at time of diagnosis and were used as the discovery cohort for the protein-expression biomarker. Two proteins, Midkine and Follistatin-like 3 (FSTL3) were then validated by enzyme-linked immunosorbent assays. Midkine and FSTL3 were tested in combination to identify SSc-PAH and were validated in two independent cohorts of SSc-PAH (n = 23, n = 11). RESULTS: Eighty-two proteins were found to be differentially regulated in SSc-PAH sera. Two proteins (Midkine and FSTL3) were also shown to be elevated in publicly available data and their expression was evaluated in independent cohorts. In the validation cohorts, the combination of Midkine and FSTL3 had an area under the receiver operating characteristic curve (AUC) of 0.85 and 0.92 with respective corresponding measures of sensitivity of 76% and 91%, and specificity measures of 76% and 80%. CONCLUSIONS: These findings indicate that there is a clear delineation between overall protein expression in sera from SSc patients and those with SSc-PAH. The combination of Midkine and FSTL3 can serve as an SSc-PAH biomarker and are potential drug targets for this rare disease population.


Asunto(s)
Biomarcadores/sangre , Proteínas Relacionadas con la Folistatina/sangre , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/etiología , Midkina/sangre , Esclerodermia Sistémica/complicaciones , Anciano , Anciano de 80 o más Años , Diagnóstico Precoz , Femenino , Humanos , Hipertensión Pulmonar/sangre , Masculino , Persona de Mediana Edad , Esclerodermia Sistémica/sangre , Sensibilidad y Especificidad
11.
J Asthma Allergy ; 11: 159-171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30122959

RESUMEN

BACKGROUND: Purinergic receptors control cell proliferation, apoptosis, migration, inflammation, and cytokine secretion. Increased expression of specific purinergic receptors is reported in asthma. The role of purinergic P2Y6 receptors (P2Y6R) in asthma is controversial. HYPOTHESIS: P2Y6R activation in asthma improves pulmonary function and reduces inflammation and smooth muscle amount. METHODS: Female mice (C57/BL6, age 30 days) were randomly assigned to receive intranasal house dust mite (HDM) antigen (40 or 80 µg) or saline, 5 days/week, for 6 weeks. Randomly selected subgroups received intraperitoneal P2Y6R agonist prodrug (GC021109; 10 or 100 µg/kg weight/dose) simultaneously with HDM. After 6 weeks, lung function was measured. Lung lavage fluid (LLF) was used to measure total cell count, total protein, and cytokines. Immunohistochemistry for alpha smooth muscle actin (α-SMA) was done. Airway wall thickness was measured on micro-computed tomography (micro-CT) images. RESULTS: Pulmonary function testing revealed a HDM dose-dependent airway hyperresponsiveness. Airway resistance was increased 2-fold while compliance was decreased by 50% at the higher HDM dose (P<0.05). GC021109 prevented these changes. HDM-exposed mice had elevated inflammatory cell and total protein levels in LLF which were prevented by GC021109 (P<0.05). HDM mice also had elevated LLF levels of interleukin (IL)-4, IL-5, IL-12, granulocyte colony stimulating factor, chemokine (C-X-C) motif ligand 1, and leukemia inhibitory factor that were reduced by GC021109 with a dose-dependent pattern. HDM mice had increased peribronchial and perivascular inflammatory cell infiltration and increased α-SMA; these changes were absent with GC021109. Airway wall thickness measured on micro-CT images was increased after HDM exposure and significantly reduced by GC021109 treatment. CONCLUSION: The P2Y6R prodrug GC021109 inhibited allergen-induced changes in pulmonary function, inflammatory responses, and airway and vascular smooth muscle mass. P2Y6R activation may be an effective therapeutic maintenance strategy in asthma.

12.
PLoS One ; 13(4): e0195780, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29649319

RESUMEN

Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings may provide useful tools in achieving the regulation of the vascular hypercontractility taking place in PAH.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Factores Despolimerizantes de la Actina/metabolismo , Bradiquinina/metabolismo , Bradiquinina/farmacología , Impedancia Eléctrica , Endotelina-1/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión Pulmonar/etiología , Quinasas Lim/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
13.
Thromb Res ; 160: 58-65, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29101791

RESUMEN

One of the major contributors to sickle cell disease (SCD) pathobiology is the hemolysis of sickle red blood cells (RBCs), which release free hemoglobin and platelet agonists including adenosine 5'-diphosphate (ADP) into the plasma. While platelet activation/aggregation may promote tissue ischemia and pulmonary hypertension in SCD, modulation of sickle platelet dysfunction remains poorly understood. Calpain-1, a ubiquitous calcium-activated cysteine protease expressed in hematopoietic cells, mediates aggregation of platelets in healthy mice. We generated calpain-1 knockout Townes sickle (SSCKO) mice to investigate the role of calpain-1 in steady state and hypoxia/reoxygenation (H/R)-induced sickle platelet activation and aggregation, clot retraction, and pulmonary arterial hypertension. Using multi-electrode aggregometry, which measures platelet adhesion and aggregation in whole blood, we determined that steady state SSCKO mice exhibit significantly impaired PAR4-TRAP-stimulated platelet aggregation as compared to Townes sickle (SS) and humanized control (AA) mice. Interestingly, the H/R injury induced platelet hyperactivity in SS and SSCKO, but not AA mice, and partially rescued the aggregation defect in SSCKO mice. The PAR4-TRAP-stimulated GPIIb-IIIa (αIIbß3) integrin activation was normal in SSCKO platelets suggesting that an alternate mechanism mediates the impaired platelet aggregation in steady state SSCKO mice. Taken together, we provide the first evidence that calpain-1 regulates platelet hyperactivity in sickle mice, and may offer a viable pharmacological target to reduce platelet hyperactivity in SCD.


Asunto(s)
Anemia de Células Falciformes/sangre , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Calpaína/sangre , Activación Plaquetaria/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Hipoxia/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L752-L762, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28775095

RESUMEN

Tissue matrix remodeling and fibrosis leading to loss of pulmonary arterial and right ventricular compliance are important features of both experimental and clinical pulmonary hypertension (PH). We have previously reported that transglutaminase 2 (TG2) is involved in PH development while others have shown it to be a cross-linking enzyme that participates in remodeling of extracellular matrix in fibrotic diseases in general. In the present studies, we used a mouse model of experimental PH (Sugen 5416 and hypoxia; SuHypoxia) and cultured primary human cardiac and pulmonary artery adventitial fibroblasts to evaluate the relationship of TG2 to the processes of fibrosis, protein cross-linking, extracellular matrix collagen accumulation, and fibroblast-to-myofibroblast transformation. We report here that TG2 expression and activity as measured by serotonylated fibronectin and protein cross-linking activity along with fibrogenic markers are significantly elevated in lungs and right ventricles of SuHypoxic mice with PH. Similarly, TG2 expression and activity, protein cross-linking activity, and fibrogenic markers are significantly increased in cultured cardiac and pulmonary artery adventitial fibroblasts in response to hypoxia exposure. Pharmacological inhibition of TG2 activity with ERW1041E significantly reduced hypoxia-induced cross-linking activity and synthesis of collagen 1 and α-smooth muscle actin in both the in vivo and in vitro studies. TG2 short interfering RNA had a similar effect in vitro. Our results suggest that TG2 plays an important role in hypoxia-induced pulmonary and right ventricular tissue matrix remodeling in the development of PH.


Asunto(s)
Fibroblastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Transglutaminasas/metabolismo , Animales , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2
15.
Pulm Circ ; 6(2): 224-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27252849

RESUMEN

This study aimed to characterize alterations in select eicosanoids in experimental and human pulmonary arterial hypertension (PAH) and to assess their potential utility as predictors of outcome. Using liquid chromatography-mass spectrometry, we performed targeted lipidomic analyses of the lungs and right ventricles (RVs) of chronically hypoxic rats and plasma of consecutive PAH patients and healthy controls. In rat lungs, chronic hypoxia was associated with significantly decreased lung prostacyclin (PGI2)/thromboxane B2 (TXB2) ratio and elevated lung 8-hydroxyeicosanoid (HETE) acid concentrations. RV eicosanoids did not exhibit any changes with chronic hypoxia. PAH treatment-naïve patients had significantly increased plasma concentrations of TXB2 and 5-, 8-, 12-, and 15-HETE. The PGI2/TXB2 ratio was lower in PAH patients than in controls, especially in the treatment-naïve cohort (median: 2.1, 0.3, and 1.3 in controls, treatment-naïve, and treated patients, respectively, P = 0.001). Survival was significantly worse in PAH patients with 12-HETEhigh (≥57 pg/mL) and 15-HETEhigh (≥256 pg/mL) in unadjusted and adjusted analyses (hazard ratio [HR]: 2.8 [95% confidence interval (CI): 1.1-7.3], P = 0.04 and HR: 4.3 [95% CI: 1.6-11.8], P = 0.004, respectively; adjustment was performed with the REVEAL [Registry to Evaluate Early and Long-Term PAH Disease Management] risk score). We demonstrate significant alterations in eicosanoid pathways in experimental and human PAH. We found that 12- and 15-HETE were independent predictors of survival in human PAH, even after adjusting for the REVEAL score, suggesting their potential role as novel biomarkers.

16.
J Appl Physiol (1985) ; 119(4): 412-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26066827

RESUMEN

Anthrax is associated with severe vascular leak, which is caused by the bacterial lethal toxin (LeTx). Pleural effusions and pulmonary edema that occur in anthrax are believed to reflect endothelial injury caused by the anthrax toxin. Since vascular leak can also be observed consistently in rats injected intravenously with LeTx, the latter might present a simple physiologically relevant animal model of acute lung injury (ALI). Such a model could be utilized in evaluating and developing better treatment for ALI or acute respiratory distress syndrome (ARDS), as other available rodent models do not consistently produce the endothelial permeability that is a major component of ARDS. The biological activity of LeTx resides in the lethal factor metalloprotease that specifically degrades MAP kinase kinases (MKKs). Recently, we showed that LeTx inactivation of p38 MAP kinase signaling via degradation of MKK3 in pulmonary vascular endothelial cells can be linked to compromise of the endothelial permeability barrier. LeTx effects were linked specifically to blocking activation of p38 substrate and MAP kinase-activated protein kinase 2 (MAPKAPK2 or MK2) and phosphorylation of the latter's substrate, heat shock protein 27 (HSP27). We have now designed a peptide that directly and specifically activates MK2, causing HSP27 phosphorylation in cells and in vivo. The MK2-activating peptide (MK2-AP) also blocks the effects of LeTx on endothelial barriers in cultured cells and reduces LeTx-induced pulmonary vascular leak in rats. Hence, MK2-AP has the therapeutic potential to counteract anthrax or pulmonary edema and vascular leak due to other causes.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antígenos Bacterianos , Toxinas Bacterianas , Células Endoteliales/efectos de los fármacos , Activadores de Enzimas/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/efectos de los fármacos , Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Edema Pulmonar/prevención & control , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/enzimología , Animales , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Citoprotección , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Activación Enzimática , Proteínas de Choque Térmico HSP27/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/irrigación sanguínea , Pulmón/enzimología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Edema Pulmonar/inducido químicamente , Edema Pulmonar/enzimología , Interferencia de ARN , Ratas , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
17.
Curr Top Pept Protein Res ; 16: 1-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27274622

RESUMEN

Migration of vascular smooth muscle cells is a key element in remodeling during pulmonary arterial hypertension (PAH). We are observing key alterations in the migratory characteristics of human pulmonary artery smooth muscle cells (HPASMC) isolated from transplanted lungs of subjects with PAH. Using wound migration and barrier removal assays, we demonstrate that the PAH cells migrate under quiescent growth conditions and in the absence of pro-migratory factors such as platelet derived growth factor (PDGF). Under the same conditions, in the absence of PDGF, non-PAH HPASMC show negligible migration. The dysregulated migration initiates, in part, through phosphorylation events signaled through the unstimulated PDGF receptor via focal adhesion kinase (FAK) whose total basal expression and phosphorylation at tyrosine 391 is markedly increased in the PAH cells and is inhibited by a motif mimicking cell-permeable peptide (MMCPP) targeting the Tyr751 region of the PDGF receptor and by imatinib. However, exposure of the PAH cells to PDGF further promotes migration. Inhibition of p21 activated kinases (PAK), LIM kinases (LIMK), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) reduces both the dysregulated and the PDGF-stimulated migration. Immunofluorescence microscopy confirms these observations showing activated JNK and p38 MAPK at the edge of the wound but not in the rest of the culture in the PAH cells. The upstream inhibitors FAK (PF-573228) and imatinib block this activation of JNK and p38 at the edge of the site of injury and correspondingly inhibit migration. MMCPP which inhibit the activation of downstream effectors of migration, cofilin and caldesmon, also limit the dysregulated migration. These results highlight key pathways which point to potential targets for future therapies of pulmonary hypertension with MMCPP.

18.
Cardiovasc Pathol ; 24(2): 80-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25434723

RESUMEN

Despite high expression levels, the role of Tsc1 in cardiovascular tissue is ill defined. We launched this study to examine the role of Tsc1 in cardiac physiology and pathology. Mice in which Tsc1 was deleted in cardiac tissue and vascular smooth muscle (Tsc1c/cSM22cre(+/-)), developed progressive cardiomegaly and hypertension and died early. Hearts of Tsc1c/cSM22cre(+/-) mice displayed a progressive increase in cardiomyocyte number, and to a lesser extent, size between the ages of 1 and 6 weeks. In addition, compared to control hearts, proliferation markers (phospho-histone 3 and PCNA) were elevated in Tsc1c/cSM22cre(+/-) cardiomyocytes at 0-4 weeks, suggesting that cardiomyocyte proliferation was the predominant mechanism underlying cardiomegaly in Tsc1c/cSM22cre(+/-) mice. To examine the contribution of Tsc1 deletion in peripheral vascular smooth muscle to the cardiac phenotype, Tsc1c/cSM22cre(+/-) mice were treated with the antihypertensive, hydralazine. Prevention of hypertension had no effect on survival, cardiac size, or cardiomyocyte number in these mice. We furthermore generated mice in which Tsc1 was deleted only in vascular smooth muscle but not in cardiac tissue (Tsc1c/cSMAcre-ER(T2+/-)). The Tsc1c/cSMAcre-ER(T2+/-) mice also developed hypertension. However, their survival was normal and no cardiac abnormalities were observed. Our results suggest that loss of Tsc1 in the heart causes cardiomegaly, which is driven by increased cardiomyocyte proliferation that also appears to confer relative resistance to afterload reduction. These findings support a critical role for the Tsc1 gene as gatekeeper in the protection against uncontrolled cardiac growth.


Asunto(s)
Cardiomegalia/metabolismo , Proliferación Celular/genética , Miocitos Cardíacos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Hiperplasia/genética , Hiperplasia/metabolismo , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa Multiplex , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos Cardíacos/patología , Reacción en Cadena de la Polimerasa , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
19.
Cell Signal ; 26(12): 2818-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25218191

RESUMEN

Tissue transglutaminase 2 (TG2) is a multifunctional enzyme that cross-links proteins with monoamines such as serotonin (5-hydroxytryptamine, 5-HT) via a transglutamidation reaction, and is associated with pathophysiologic vascular responses. 5-HT is a mitogen for pulmonary artery smooth muscle cells (PASMCs) that has been linked to pulmonary vascular remodeling underlying pulmonary hypertension development. We previously reported that 5-HT-induced PASMC proliferation is inhibited by the TG2 inhibitor monodansylcadaverine (MDC); however, the mechanisms are poorly understood. In the present study we hypothesized that TG2 contributes to 5-HT-induced signaling pathways of PASMCs. Pre-treatment of bovine distal PASMCs with varying concentrations of the inhibitor MDC led to differential inhibition of 5-HT-stimulated AKT and ROCK activation, while p-P38 was unaffected. Concentration response studies showed significant inhibition of AKT activation at 50 µM MDC, along with inhibition of the AKT downstream targets mTOR, p-S6 kinase and p-S6. Furthermore, TG2 depletion by siRNA led to reduced 5-HT-induced AKT activation. Immunoprecipitation studies showed that 5-HT treatment led to increased levels of serotonylated AKT and increased TG2-AKT complex formations which were inhibited by MDC. Overexpression of TG2 point mutant cDNAs in PASMCs showed that the TG2 C277V transamidation mutant blunted 5-HT-induced AKT activation and 5-HT-induced PASMC mitogenesis. Finally, 5-HT-induced AKT activation was blunted in SERT genetic knock-out rat cells, but not in their wild-type counterpart. The SERT inhibitor imipramine similarly blocked AKT activation. These results indicate that TG2 contributes to 5-HT-induced distal PASMC proliferation via promotion of AKT signaling, likely via its serotonylation. Taken together, these results provide new insight into how TG2 may participate in vascular smooth muscle remodeling.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Mitosis/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/citología , Serotonina/farmacología , Transglutaminasas/metabolismo , Animales , Cadaverina/análogos & derivados , Cadaverina/farmacología , Bovinos , ADN Complementario/genética , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Imipramina/farmacología , Proteínas Mutantes/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteína Glutamina Gamma Glutamiltransferasa 2 , ARN Interferente Pequeño/metabolismo , Ratas , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Timidina/metabolismo , Quinasas Asociadas a rho/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L576-85, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25128524

RESUMEN

We previously reported that transglutaminase 2 (TG2) activity is markedly elevated in lungs of hypoxia-exposed rodent models of pulmonary hypertension (PH). Since vascular remodeling of pulmonary artery smooth muscle cells (PASMCs) is important in PH, we undertook the present study to determine whether TG2 activity is altered in PASMCs with exposure to hypoxia and whether that alteration participates in their proliferative response to hypoxia. Cultured distal bovine (b) and proximal human (h) PASMCs were exposed to hypoxia (3% O2) or normoxia (21% O2). mRNA and protein expression were determined by PCR and Western blot analyses. TG2 activity and function were visualized and determined by fluorescent labeled 5-pentylamine biotin incorporation and immunoblotting of serotonylated fibronectin. Cell proliferation was assessed by [(3)H]thymidine incorporation assay. At 24 h, both TG2 expression and activity were stimulated by hypoxia in bPASMCs. Activation of TG2 by hypoxia was blocked by inhibition of the extracellular calcium-sensing receptor or the transient receptor potential channel V4. In contrast, TG2 expression was blocked by inhibition of the transcription factor hypoxia-inducible factor-1α, supporting the presence of separate mechanisms for stimulation of activity and expression of TG2. Pulmonary arterial hypertension patient-derived hPASMCs were found to proliferate significantly more rapidly and respond to hypoxia more strongly than control-derived hPASMCs. Similar to bovine cells, hypoxia-induced proliferation of patient-derived cells was blocked by inhibition of TG2 activity. Our results suggest an important role for TG2, mediated by intracellular calcium fluxes and HIF-1α, in hypoxia-induced PASMC proliferation and possibly in vascular remodeling in PH.


Asunto(s)
Proliferación Celular , Proteínas de Unión al GTP/fisiología , Hipertensión Pulmonar/enzimología , Miocitos del Músculo Liso/enzimología , Arteria Pulmonar/patología , Transglutaminasas/fisiología , Animales , Señalización del Calcio , Bovinos , Hipoxia de la Célula , Células Cultivadas , Activación Enzimática , Inducción Enzimática , Inhibidores Enzimáticos/farmacología , Proteínas de Unión al GTP/antagonistas & inhibidores , Humanos , Hipertensión Pulmonar/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Arteria Pulmonar/fisiopatología , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Transglutaminasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA