Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 20(17)2019 Aug 21.
Article En | MEDLINE | ID: mdl-31438500

Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital associated kidney damage. Potential mechanisms of CI-AKI may involve diminished renal hemodynamics, inflammatory responses, and direct cytotoxicity. The hypothesis for this study is that diatrizoic acid (DA) induces direct cytotoxicity to human proximal tubule (HK-2) cells via calcium dysregulation, mitochondrial dysfunction, and oxidative stress. HK-2 cells were exposed to 0-30 mg I/mL DA or vehicle for 2-24 h. Conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue exclusion indicated a decrease in mitochondrial and cell viability within 2 and 24 h, respectively. Mitochondrial dysfunction was apparent within 8 h post exposure to 15 mg I/mL DA as shown by Seahorse XF cell mito and Glycolysis Stress tests. Mitophagy was increased at 8 h by 15 mg I/mL DA as confirmed by elevated LC3BII/I expression ratio. HK-2 cells pretreated with calcium level modulators BAPTA-AM, EGTA, or 2-aminophenyl borinate abrogated DA-induced mitochondrial damage. DA increased oxidative stress biomarkers of protein carbonylation and 4-hydroxynonenol (4HNE) adduct formation. Caspase 3 and 12 activation was induced by DA compared to vehicle at 24 h. These studies indicate that clinically relevant concentrations of DA impair HK-2 cells by dysregulating calcium, inducing mitochondrial turnover and oxidative stress, and activating apoptosis.


Calcium/metabolism , Contrast Media/adverse effects , Diatrizoate/adverse effects , Mitophagy/drug effects , Oxidative Stress/drug effects , Acute Kidney Injury/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Superoxide Dismutase/metabolism
2.
J Pharmacol Exp Ther ; 370(2): 160-171, 2019 08.
Article En | MEDLINE | ID: mdl-31101680

The administration of intravenous iodinated radiocontrast media (RCM) to visualize internal structures during diagnostic procedures has increased exponentially since their first use in 1928. A serious side effect of RCM exposure is contrast-induced acute kidney injury (CI-AKI), which is defined as an abrupt and prolonged decline in renal function occurring 48-72 hours after injection. Multiple attempts have been made to decrease the toxicity of RCM by altering ionic strength and osmolarity, yet there is little evidence to substantiate that a specific RCM is superior in avoiding CI-AKI. RCM-associated kidney dysfunction is largely attributed to alterations in renal hemodynamics, specifically renal vasoconstriction; however, numerous studies indicate direct cytotoxicity as a source of epithelial damage. Exposure of in vitro renal proximal tubule cells to RCM has been shown to affect proximal tubule epithelium in the following manner: 1) changes to cellular morphology in the form of vacuolization; 2) increased production of reactive oxygen species, resulting in oxidative stress; 3) mitochondrial dysfunction, resulting in decreased efficiency of the electron transport chain and ATP production; 4) perturbation of the protein folding capacity of the endoplasmic reticulum (ER) (activating the unfolded protein response and inducing ER stress); and 5) decreased activity of cell survival kinases. The present review focuses on the direct cytotoxicity of RCM on proximal tubule cells in the absence of in vivo complications, such as alterations in renal hemodynamics or cytokine influence.


Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Contrast Media/adverse effects , Contrast Media/chemistry , Iodine Radioisotopes/chemistry , Kidney Tubules, Proximal/drug effects , Acute Kidney Injury/prevention & control , Animals , Biological Products/pharmacology , Humans , Kidney Tubules, Proximal/pathology , Risk Factors
...