Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Drugs Dermatol ; 20(10): 1031-1036, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34636517

2021 is the 50th anniversary of the FDA approval of minocycline (MCN). While many other antibiotics have become obsolete during this time, MCN continues to be quite useful. In dermatology, MCN is used prominently in acne vulgaris, and is also employed in many other dermatological conditions because of its molecular and pharmacological properties. In this article, we review the history of minocycline, and outline the evolution of the drug since its inception. Based on its existing longstanding utility and continued innovations in formulation and delivery systems, we postulate that it will continue to have a prominent position in the dermatologist’s armamentarium. J Drugs Dermatol. 2021;20(10):1031-1036. doi:10.36849/JDD.6370.


Acne Vulgaris , Minocycline , Acne Vulgaris/drug therapy , Anti-Bacterial Agents/therapeutic use , Humans
2.
J Clin Aesthet Dermatol ; 10(11): 49-51, 2017 Nov.
Article En | MEDLINE | ID: mdl-29399261

Venous leg ulcers can lead to debilitation and a decrease in quality of life and can require costly treatments. Compression therapy remains the foundation of conservative treatment. However, some ulcers become indolent, chronic, and unresolved for years, even with adherence to standard of care. Here, the authors describe the case of a 56-year-old male patient with a recalcitrant recurrent distal leg ulcer. The ulcer was treated initially with debridement and compression therapy, respectively, and then subsequently with hyaluronic acid sodium salt 0.2% gel, which prompted complete wound closure. Hyaluronic acid is known to stimulate angiogenesis and exert fibrogenic action within inflamed and impaired healing tissues. Only a limited number of studies have been conducted to evaluate the clinical use of hyaluronic acid for treating venous leg ulcers. Success obtained with this patient should spur future clinical studies to fully evaluate this modality as a safe, efficacious, expeditious, and cost-effective option for the management of recalcitrant chronic ulcers.

3.
J Drugs Dermatol ; 15(9): 1116-20, 2016 Sep 01.
Article En | MEDLINE | ID: mdl-27602975

BACKGROUND: Poly-ureaurethane has been previously described for the management of dry, brittle, and in general, dystrophic nails. The polymer yields a waterproof, breathable barrier to protect the nail plate and prevent further damage to the nail, while regulating transonychial water loss (TOWL). Because nail dystrophy and dessication are contributing factors to onychomycosis, a barrier that protects the nail but also allows a topical antifungal to permeate its shield is potentially an advantageous combination. Oral antifungals such as terbinafine, itraconazole, and fluconazole, as well as the newer topical antifungals efinaconazole and tavaborole (although formulated to penetrate the nail unit and work with the porosity and inherent electrical charge of the nail plate), do not take into account nail damage that has been created from years of harboring a dermatophyte infection. Up to 50% of cases presumed to be onychomycosis are in fact onychodystrophy without fungal infection, and laboratory testing for fungus should be obtained prior to initiating antifungal treatment. Whether a nail has onychomycosis, or onychodystrophy due to other causes, barrier function and structural integrity are compromised in diseased nails, and should be addressed. A poly-ureaurethane barrier that protects against wetting/drying, fungal reservoirs, and microtrauma, followed by the addition of oral or topical antifungals after laboratory fungal confirmation may optimize outcomes in the treatment of onychomycosis.
OBJECTIVE: The purpose of this work was to determine through in vitro release testing (IVRT) whether poly-ureaurethane 16% allows for penetration of efinaconazole 10% or tavaborole 5%. Results could spur subsequent clinical studies which would have implications for the addition of an antifungal based on fungal confirmation, after addresssing the underlying nail dystrophy primarily.
METHODS: A vertical diffusion cell system was used to evaluate the ability of efinaconazole 10% and tavaborole 5% to penetrate across poly-ureaurethane 16%. The diffusion cells had a 1.0 cm2 surface area and approximately 8 mL receptor volume. Poly-ureaurethane 16% was applied to a 0.45 μm nylon membrane and allowed to dry before use. Efinaconazole 10% or tavaborole 5% was then applied to the poly-ureaurethane 16% coated membrane, and samples were pulled from the receptor chamber at various times. Reverse phase chromatography was then used to assess the penetration of each active ingredient across the membrane.
RESULTS: The flux and permeability of efinaconazole or tavaborole across poly-ureaurethane 16% were determined from efinaconazole 10% or tavaborole 5%, respectively. The flux and permeability of efinaconazole were determined to be 503.9 +/- 31.9 μg/cm2/hr and 14.0 +/- 0.9 nm/sec. The flux and permeability of tavaborole were determined to be 755.5 +/- 290.4 μg/cm2/hr and 42.0 +/- 16.1 nm/sec.
CONCLUSION: In addition to the treatment of onychoschizia, onychorrhexis, and other signs of severe dessication of the nail plate, a barrier that regulates TOWL should be considered in the management onychomycosis to address barrier dysfunction and to promote stabilization of the damaged nail. Previously published flux values across the nail are reported to be 1.4 μg/cm2/day for efinaconazole and 204 μg/cm2/day for tavaborole. These values are substantially lower than the herein determined flux for both molecules across poly-ureaurethane 16%. A comparison of the data suggests that poly-ureaurethane 16%, if used prior to efinaconazole or tavaborole, would not limit the ability of either active ingredient to access the nail, and therefore, would be unlikely to reduce their antifungal effect. Onychodystrophy is inherent in, and often precedes onychomycosis, and consideration should be given for initiation of treatment in the same sequence: stabilizing and protecting the nail plate barrier primarily, and subsequently adding oral or topical antifungals after laboratory confirmation. Future clinical studies will be needed to determine combination efficacy for in vivo use.

J Drugs Dermatol. 2016;15(9):1116-1120.


Boron Compounds/metabolism , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Nail Diseases , Nails, Malformed , Onychomycosis , Polymers/metabolism , Polyurethanes/metabolism , Triazoles/metabolism , Administration, Topical , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Diffusion Chambers, Culture , Drug Compounding , Humans , Nail Diseases/drug therapy , Nail Diseases/metabolism , Nails, Malformed/drug therapy , Nails, Malformed/metabolism , Onychomycosis/drug therapy , Onychomycosis/metabolism , Permeability/drug effects , Polymers/administration & dosage , Polymers/chemistry , Polyurethanes/administration & dosage , Polyurethanes/chemistry , Triazoles/administration & dosage , Triazoles/chemistry
...