Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Dalton Trans ; 53(18): 7866-7879, 2024 May 07.
Article En | MEDLINE | ID: mdl-38632950

Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 µM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 µM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 µM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.


Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Rhenium , Sulfur , Humans , Rhenium/chemistry , Rhenium/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Sulfur/chemistry , Sulfur/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
2.
bioRxiv ; 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38352480

Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.

3.
Chem Commun (Camb) ; 59(45): 6877-6880, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37195631

A new photoluminescent polypyridylruthenium(II) stain for extracellular vesicles (EVs) released from lipopolysaccharide-stimulated THP-1 monocytes enabled important new insights into how the bacteria-induced immune system affects the blood-brain barrier (BBB). These included previously unknown aspects of EV interactions with BBB microvascular endothelial cells and the extracellular matrix relevant to human brain diseases.


Endothelial Cells , Extracellular Vesicles , Humans , Endothelium , Brain , Blood-Brain Barrier
4.
Vet World ; 14(8): 2016-2022, 2021 Aug.
Article En | MEDLINE | ID: mdl-34566316

BACKGROUND AND AIM: Some individuals in Indonesia consume intact goat gallbladder to prevent and treat malaria. The acute and subacute toxicity tests of goat bile (GB) have shown mild diarrhea in mice. Therefore, this study aimed to evaluate the suppressive effect of GB on parasitemia, splenomegaly, hepatomegaly, and blood biochemistry to assess liver and kidney function in BALB/c mice infected with Plasmodium berghei ANKA. MATERIALS AND METHODS: Fifty healthy mice were infected with P. berghei ANKA and divided into five groups. Mice in three groups were administered 0.5 mL of 25%, 50%, or 100% of GB by gavage. Animals in Group 4 were administered 187.2 mg/kg BW of dihydroartemisinin-piperaquine phosphate as a positive control (POS Group). Mice in fifth group were administered sterile water as negative (NEG) controls. Further, 30 uninfected mice were divided into groups 6-8 and administered GB as were mice in the first three groups. Group 9 included 10 uninfected and untreated animals as healthy controls. Treatments were administered in a 4-day suppressive test followed by daily observation of Giemsa-stained blood smears. On day 7, mice were sacrificed to measure the length and weight of spleens and livers, plasma levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine. RESULTS: GB suppressed parasitemia but did not affect the size and weight of spleens or livers or plasma levels of AST and ALT compared to uninfected GB-treated and healthy control animals. Conversely, plasma levels of BUN and creatinine were suppressed and remained in the normal range in all groups of mice. CONCLUSION: GB suppresses parasitemia with no significant impact on hepatic enzymes in GB-treated infected mice. Liver dysfunction in GB-treated infected mice was due to P. berghei rather than GB treatment.

5.
Vet World ; 13(3): 515-520, 2020 Mar.
Article En | MEDLINE | ID: mdl-32367958

AIM: The aim of this study was to investigate the toxicity of goat bile in BALB/c mice since some Indonesian people consume raw goat gallbladder to treat malaria and increase stamina. MATERIALS AND METHODS: Acute toxicity test was done in six groups of BALB/c mice using 100%, 50%, 25%, 12.5%, and 6.75% of goat bile and negative control. The death of mice was observed within 14 days. In the subacute toxicity test, the body weight and hematology parameters on day 0 and day 4 post-treatment were evaluated. The mice were closely observed for 28 days before plasma collection for the blood biochemistry evaluation. RESULTS: Mild diarrhea was observed in acute and subacute toxicity tests. No death of mice was observed in acute test. Goat bile did not inhibit the increase of the body weight of mice. A slight reduction in hemoglobin and hematocrit levels in mice treated with 25% and 50% goat bile, however, remained normal in mice treated with 100% goat bile. The red and white blood cell count were not affected. Liver and kidney functions were not affected by goat bile treatment as revealed by the plasma level of aspartate aminotransferase and alanine aminotransferase, blood urea nitrogen, and creatinine, which remained in the normal range. CONCLUSION: Goat bile treatment in BALB/c mice caused mild toxicity in mice. Hydrophobic bile acids may cause the toxicity of goat bile in mice; therefore, it is recommended that goat bile consumption not to be taken oftenly to avoid its harmful effect.

...