Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 12(15): e030603, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37489738

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a common bone marrow abnormality induced by age-related DNA mutations, which give rise to proinflammatory immune cells. These immune cells exacerbate atherosclerotic cardiovascular disease and may induce or accelerate heart failure. The mechanisms involved are complex but point toward a central role for proinflammatory macrophages and an inflammasome-dependent immune response (IL-1 [interleukin-1] and IL-6 [interleukin-6]) in the atherosclerotic plaque or directly in the myocardium. Intracardiac inflammation may decrease cardiac function and induce cardiac fibrosis, even in the absence of atherosclerotic cardiovascular disease. The pathophysiology and consequences of CHIP may differ among implicated genes as well as subgroups of patients with heart failure, based on cause (ischemic versus nonischemic) and ejection fraction (reduced ejection fraction versus preserved ejection fraction). Evidence is accumulating that CHIP is associated with cardiovascular mortality in ischemic and nonischemic heart failure with reduced ejection fraction and involved in the development of heart failure with preserved ejection fraction. CHIP and corresponding inflammatory pathways provide a highly potent therapeutic target. Randomized controlled trials in patients with well-phenotyped heart failure, where readily available anti-inflammatory therapies are used to intervene with clonal hematopoiesis, may pave the way for a new area of heart failure treatment. The first clinical trials that target CHIP are already registered.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Hematopoyesis Clonal/genética , Enfermedades Cardiovasculares/etiología , Hematopoyesis/genética , Aterosclerosis/genética , Mutación
2.
Cardiovasc Res ; 118(13): 2768-2777, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34550346

RESUMEN

Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with advanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifestations that differentially impact plaque's fate. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcification to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall plaque fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflammation kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progression and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype, modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may explain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic osteoid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely lacking, it is crucial to better understand its mechanisms of development.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Calcificación Vascular , Humanos , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Calcificación Vascular/patología , Lípidos , Metaplasia/metabolismo , Metaplasia/patología , Hidroxiapatitas/metabolismo
3.
J Card Fail ; 28(5): 778-786, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34933097

RESUMEN

BACKGROUND: Adipose tissue influences the expression and degradation of circulating biomarkers. We aimed to identify the biomarker profile and biological meaning of biomarkers associated with obesity to assess the effect of spironolactone on the circulating biomarkers and to explore whether obesity might modify the effect of spironolactone. METHODS AND RESULTS: Protein biomarkers (n = 276) from the Olink Proseek-Multiplex cardiovascular and inflammation panels were measured in plasma collected at baseline, 1 month and 9 months from the HOMAGE randomized controlled trial participants. Of the 510 participants, 299 had obesity defined as an increased waist circumference (≥102 cm in men and ≥88 cm in women). Biomarkers at baseline reflected adipogenesis, increased vascularization, decreased fibrinolysis, and glucose intolerance in patients with obesity at baseline. Treatment with spironolactone had only minor effects on this proteomic profile. Obesity modified the effect of spironolactone on systolic blood pressure (Pinteraction = 0.001), showing a stronger decrease of blood pressure in obese patients (-14.8 mm Hg 95% confidence interval -18.45 to -11.12) compared with nonobese patients (-3.6 mm Hg 95% confidence interval -7.82 to 0.66). CONCLUSIONS: Among patients at risk for heart failure, those with obesity have a characteristic proteomic profile reflecting adipogenesis and glucose intolerance. Spironolactone had only minor effects on this obesity-related proteomic profile, but obesity significantly modified the effect of spironolactone on systolic blood pressure.


Asunto(s)
Intolerancia a la Glucosa , Insuficiencia Cardíaca , Biomarcadores , Femenino , Humanos , Masculino , Antagonistas de Receptores de Mineralocorticoides , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Proteómica , Espironolactona/uso terapéutico , Resultado del Tratamiento
4.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063989

RESUMEN

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Asunto(s)
Calcinosis , Miocitos del Músculo Liso , Proteoglicanos/metabolismo , Remodelación Vascular , Animales , Diferenciación Celular , Estudios de Cohortes , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratas , Factor de Transcripción SOX9/metabolismo , Proteína smad3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...