Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 33(15): 9376-9386, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37288494

RESUMEN

Reelin is a large extracellular matrix protein abundantly expressed in the developing neocortex of mammals. During embryonic and early postnatal stages in mice, Reelin is secreted by a transient neuronal population, the Cajal-Retzius neurons (CRs), and is mostly known to insure the inside-out migration of neurons and the formation of cortical layers. During the first 2 postnatal weeks, CRs disappear from the neocortex and a subpopulation of GABAergic neurons takes over the expression of Reelin, albeit in lesser amounts. Although Reelin expression requires a tight regulation in a time- and cell-type specific manner, the mechanisms regulating the expression and secretion of this protein are poorly understood. In this study, we establish a cell-type specific profile of Reelin expression in the marginal zone of mice neocortex during the first 3 postnatal weeks. We then investigate whether electrical activity plays a role in the regulation of Reelin synthesis and/or secretion by cortical neurons during the early postnatal period. We show that increased electrical activity promotes the transcription of reelin via the brain-derived neurotrophic factor/TrkB pathway, but does not affect its translation or secretion. We further demonstrate that silencing the neuronal network promotes the translation of Reelin without affecting the transcription or secretion. We conclude that different patterns of activity control various stages of Reelin synthesis, whereas its secretion seems to be constitutive.


Asunto(s)
Neocórtex , Animales , Ratones , Neocórtex/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Mamíferos/metabolismo
2.
Cell Mol Life Sci ; 80(6): 175, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269320

RESUMEN

During early brain development, homeostatic removal of cortical neurons is crucial and requires multiple control mechanisms. We investigated in the cerebral cortex of mice whether the BAX/BCL-2 pathway, an important regulator of apoptosis, is part of this machinery and how electrical activity might serve as a set point of regulation. Activity is known to be a pro-survival factor; however, how this effect is translated into enhanced survival chances on a neuronal level is not fully understood. In this study, we show that caspase activity is highest at the neonatal stage, while developmental cell death peaks at the end of the first postnatal week. During the first postnatal week, upregulation of BAX is accompanied by downregulation of BCL-2 protein, resulting in a high BAX/BCL-2 ratio when neuronal death rates are high. In cultured neurons, pharmacological blockade of activity leads to an acute upregulation of Bax, while elevated activity results in a lasting increase of BCL-2 expression. Spontaneously active neurons not only exhibit lower Bax levels than inactive neurons but also show almost exclusively BCL-2 expression. Disinhibition of network activity prevents the death of neurons overexpressing activated CASP3. This neuroprotective effect is not the result of reduced caspase activity but is associated with a downregulation of the BAX/BCL-2 ratio. Notably, increasing neuronal activity has a similar, non-additive effect as the blockade of BAX. Conclusively, high electrical activity modulates BAX/BCL-2 expression and leads to higher tolerance to CASP3 activity, increases survival, and presumably promotes non-apoptotic CASP3 functions in developing neurons.


Asunto(s)
Caspasas , Proteínas Proto-Oncogénicas , Ratones , Animales , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Caspasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Neuronas/metabolismo , Corteza Cerebral/metabolismo
3.
Transl Psychiatry ; 13(1): 152, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149657

RESUMEN

Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Masculino , Ratones , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Endocannabinoides/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transducción de Señal
4.
Front Cell Dev Biol ; 10: 937761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035995

RESUMEN

Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.

5.
Sci Rep ; 11(1): 20407, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650146

RESUMEN

Synchronization and bursting activity are intrinsic electrophysiological properties of in vivo and in vitro neural networks. During early development, cortical cultures exhibit a wide repertoire of synchronous bursting dynamics whose characterization may help to understand the parameters governing the transition from immature to mature networks. Here we used machine learning techniques to characterize and predict the developing spontaneous activity in mouse cortical neurons on microelectrode arrays (MEAs) during the first three weeks in vitro. Network activity at three stages of early development was defined by 18 electrophysiological features of spikes, bursts, synchrony, and connectivity. The variability of neuronal network activity during early development was investigated by applying k-means and self-organizing map (SOM) clustering analysis to features of bursts and synchrony. These electrophysiological features were predicted at the third week in vitro with high accuracy from those at earlier times using three machine learning models: Multivariate Adaptive Regression Splines, Support Vector Machines, and Random Forest. Our results indicate that initial patterns of electrical activity during the first week in vitro may already predetermine the final development of the neuronal network activity. The methodological approach used here may be applied to explore the biological mechanisms underlying the complex dynamics of spontaneous activity in developing neuronal cultures.


Asunto(s)
Red Nerviosa/fisiología , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Sincronización Cortical/fisiología , Fenómenos Electrofisiológicos/fisiología , Aprendizaje Automático , Ratones , Microelectrodos , Neuronas/fisiología , Máquina de Vectores de Soporte , Análisis de Matrices Tisulares
6.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205237

RESUMEN

A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single neurons in the absence of synaptic inputs while maintaining stable overall activity levels. Replacing the burst firing pattern with a non-physiological, single pulse pattern significantly increased cell death rates as compared to physiological burst stimulation. Furthermore, physiological burst stimulation led to an elevated peak in intracellular calcium and an increase in the expression level of classical activity-dependent targets but also decreased Bax/BCL-2 expression ratio and reduced caspase 3/7 activity. In summary, these results demonstrate at the single-cell level that the temporal pattern of action potentials is critical for neuronal survival versus cell death fate during cortical development, besides the pro-survival effect of action potential firing per se.


Asunto(s)
Neocórtex/citología , Neuronas/fisiología , Optogenética , Potenciales de Acción , Animales , Células Cultivadas , Proteínas Luminiscentes , Ratones , Técnicas de Placa-Clamp , Proteína Fluorescente Roja
7.
Front Mol Neurosci ; 14: 807969, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046773

RESUMEN

Throughout early phases of brain development, the two main neural signaling mechanisms-excitation and inhibition-are dynamically sculpted in the neocortex to establish primary functions. Despite its relatively late formation and persistent developmental changes, the GABAergic system promotes the ordered shaping of neuronal circuits at the structural and functional levels. Within this frame, interneurons participate first in spontaneous and later in sensory-evoked activity patterns that precede cortical functions of the mature brain. Upon their subcortical generation, interneurons in the embryonic brain must first orderly migrate to and settle in respective target layers before they can actively engage in cortical network activity. During this process, changes at the molecular and synaptic level of interneurons allow not only their coordinated formation but also the pruning of connections as well as excitatory and inhibitory synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory towards an inhibitory response is required to enable synchronization within cortical networks. Concomitantly, the progressive specification of different interneuron subtypes endows the neocortex with distinct local cortical circuits and region-specific modulation of neuronal firing. Finally, the apoptotic process further refines neuronal populations by constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly, many of these fundamental and complex processes are influenced-if not directly controlled-by electrical activity. Interneurons on the subcellular, cellular, and network level are affected by high frequency patterns, such as spindle burst and gamma oscillations in rodents and delta brushes in humans. Conversely, the maturation of interneuron structure and function on each of these scales feeds back and contributes to the generation of cortical activity patterns that are essential for the proper peri- and postnatal development. Overall, a more precise description of the conducting role of interneurons in terms of how they contribute to specific activity patterns-as well as how specific activity patterns impinge on their maturation as orchestra members-will lead to a better understanding of the physiological and pathophysiological development and function of the nervous system.

8.
Toxicol Sci ; 161(1): 103-114, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029261

RESUMEN

Domoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+. The enhanced neurotoxic effect of DOM was fully prevented by AMPA/KA receptor antagonist, while N-methyl-D-aspartate-receptor-mediated neurotoxicity did not seem to be involved, as the absence of extracellular Na+ failed to potentiate GLU excitotoxicity under the same experimental conditions. Lowering of extracellular Na+ concentration to 60 mM eliminated extracellular recording of spontaneous electrophysiological activity from cultured neurons grown on a multi electrode array and prevented DOM stimulation of the electrical activity. Although changes in the extracellular Na+ concentration did not alter the magnitude of the rapid increase in intracellular Ca2+ levels associated to DOM exposure, they did change significantly the contribution of voltage-sensitive calcium channels (VScaCs) and the recovery time to baseline. The prevention of Ca2+ influx via VSCaCs by nifedipine failed to prevent DOM toxicity at any extracellular Na+ concentration, while the reduction of extracellular Ca2+ concentration ameliorated DOM toxicity only in the absence of extracellular Na+, enhancing it in physiological conditions. Our data suggest a crucial role for extracellular Na+ concentration in determining excitotoxicity by DOM.


Asunto(s)
Cerebelo/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Ácido Kaínico/análogos & derivados , Neurotoxinas/toxicidad , Sodio/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Espacio Extracelular , Neuronas GABAérgicas/metabolismo , Ácido Kaínico/toxicidad , Ratones , Cultivo Primario de Células , Ratas , Receptores de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...