Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220155, 2023 08 28.
Article En | MEDLINE | ID: mdl-37427473

Species with large geographical ranges provide an excellent model for studying how different populations respond to dissimilar local conditions, particularly with respect to variation in climate. Maternal effects, such as nest-site choice greatly affect offspring phenotypes and survival. Thus, maternal behaviour has the potential to mitigate the effects of divergent climatic conditions across a species' range. We delineated natural nesting areas of six populations of painted turtles (Chrysemys picta) that span a broad latitudinal range and quantified spatial and temporal variation in nest characteristics. To quantify microhabitats available for females to choose, we also identified sites within the nesting area of each location that were representative of available thermal microhabitats. Across the range, females nested non-randomly and targeted microhabitats that generally had less canopy cover and thus higher nest temperatures. Nest microhabitats differed among locations but did not predictably vary with latitude or historic mean air temperature during embryonic development. In conjunction with other studies of these populations, our results suggest that nest-site choice is homogenizing nest environments, which buffers embryos from thermally induced selection and could slow embryonic evolution. Thus, although effective at a macroclimatic scale, nest-site choice is unlikely to compensate for novel stressors that rapidly increase local temperatures. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Mothers , Turtles , Animals , Female , Humans , Nesting Behavior , Turtles/genetics , Temperature , Hot Temperature
2.
Integr Comp Biol ; 63(3): 597-609, 2023 09 15.
Article En | MEDLINE | ID: mdl-37218690

The microbiome is an interactive and fluctuating community of microbes that colonize and develop across surfaces, including those associated with organismal hosts. A growing number of studies exploring how microbiomes vary in ecologically relevant contexts have recognized the importance of microbiomes in affecting organismal evolution. Thus, identifying the source and mechanism for microbial colonization in a host will provide insight into adaptation and other evolutionary processes. Vertical transmission of microbiota is hypothesized to be a source of variation in offspring phenotypes with important ecological and evolutionary implications. However, the life-history traits that govern vertical transmission are largely unexplored in the ecological literature. To increase research attention to this knowledge gap, we conducted a systematic review to address the following questions: (1) How often is vertical transmission assessed as a contributor to offspring microbiome colonization and development? (2) Do studies have the capacity to address how maternal transmission of microbes affects the offspring phenotype? (3) How do studies vary based on taxonomy and life history of the study organism, as well as the experimental, molecular, and statistical methods employed? Extensive literature searches reveal that many studies examining vertical transmission of microbiomes fail to collect whole microbiome samples from both maternal and offspring sources, particularly for oviparous vertebrates. Additionally, studies should sample functional diversity of microbes to provide a better understanding of mechanisms that influence host phenotypes rather than solely taxonomic variation. An ideal microbiome study incorporates host factors, microbe-microbe interactions, and environmental factors. As evolutionary biologists continue to merge microbiome science and ecology, examining vertical transmission of microbes across taxa can provide inferences on causal links between microbiome variation and phenotypic evolution.


Maternal Inheritance , Microbiota , Animals
3.
Biol Lett ; 19(5): 20230025, 2023 05.
Article En | MEDLINE | ID: mdl-37161295

Locomotor impairment during pregnancy is a well-documented cost of reproduction, but most empirical studies have not incorporated ecological complexity, such as locomotion on sloping inclines rather than horizontal surfaces. Biomechanical factors suggest that carrying a heavy burden-including shifts in the body's centre of mass-may impair locomotor ability even more when an animal is running uphill. If so, then measuring costs of reproduction on horizontal racetracks may underestimate these costs in nature for arboreal species. To evaluate this prediction, we measured the pregnancy-induced reduction in speed for jacky dragons (Amphibolurus muricatus) at inclines ranging from 0 to 45°. Both pregnancy and steeper slopes reduced lizard performance, but pregnancy did not exacerbate the locomotor decrement on steeper racetracks. An ability to maintain mobility on steep slopes during pregnancy may be a target of selection in arboreal taxa. To understand the evolutionary context of locomotion-based costs of reproduction, we also need studies on the relationship between organismal performance and ecologically relevant measures such as predation risk.


Lizards , Reproduction , Animals , Female , Biological Evolution , Camphor , Locomotion , Trees
4.
Environ Microbiol ; 24(12): 6336-6347, 2022 12.
Article En | MEDLINE | ID: mdl-36164972

Environmental oestrogens pose serious concerns for ecosystems through their effects on organismal survival and physiology. The gut microbiome is highly vulnerable to environmental influence, yet the effects of oestrogens on gut homeostasis are unknown because they are poorly studied in wildlife populations. To determine the influence of environmental oestrogens (i.e., xenoestrogens) on the diversity and abundance of gut microbiota, we randomly assigned 23 hatchling American alligators (Alligator mississippiensis) to three ecologically relevant treatments (control, low, and high oestrogen concentrations) for 10 weeks. We predicted that xenoestrogen exposure would decrease microbial diversity and abundance within the digestive tract and that this effect would be dose-dependent. Microbial samples were collected following diet treatments and microbial diversity was determined using 16S rRNA gene-sequencing. Individuals in oestrogen-treatment groups had decreased microbial diversity, but a greater relative abundance of operational taxonomic units than those in the control group. In addition, this effect was dose-dependent; as individuals were exposed to more oestrogen, their microbiome became less diverse, less rich and less even. Findings from this study suggest that oestrogen contamination can influence wildlife populations at the internal microbial-level, which may lead to future deleterious health effects.


Alligators and Crocodiles , Gastrointestinal Microbiome , Microbiota , Animals , Alligators and Crocodiles/genetics , Estradiol/pharmacology , Estrogens , RNA, Ribosomal, 16S/genetics , Xenobiotics
5.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Article En | MEDLINE | ID: mdl-35258602

During the vulnerable stages of early life, most ectothermic animals experience hourly and diel fluctuations in temperature as air temperatures change. While we know a great deal about how different constant temperatures impact the phenotypes of developing ectotherms, we know remarkably little about the impacts of temperature fluctuations on the development of ectotherms. In this study, we used a meta-analytic approach to compare the mean and variance of phenotypic outcomes from constant and fluctuating incubation temperatures across reptile species. We found that fluctuating temperatures provided a small benefit (higher hatching success and shorter incubation durations) at cool mean temperatures compared with constant temperatures, but had a negative effect at warm mean temperatures. In addition, more extreme temperature fluctuations led to greater reductions in embryonic survival compared with moderate temperature fluctuations. Within the limited data available from species with temperature-dependent sex determination, embryos had a higher chance of developing as female when developing in fluctuating temperatures compared with those developing in constant temperatures. With our meta-analytic approach, we identified average mean nest temperatures across all taxa where reptiles switch from receiving benefits to incurring costs when incubation temperatures fluctuate. More broadly, our study indicates that the impact of fluctuating developmental temperature on some phenotypes in ectothermic taxa are likely to be predictable via integration of developmental temperature profiles with thermal performance curves.


Cold Temperature , Reptiles , Animals , Female , Phenotype , Temperature , Time Factors
6.
J Anim Ecol ; 91(4): 845-857, 2022 04.
Article En | MEDLINE | ID: mdl-35114034

The composition of founding populations plays an important role in colonisation dynamics and can influence population growth during early stages of biological invasion. Specifically, founding populations with small propagules (i.e. low number of founders) are vulnerable to the Allee effect and have reduced likelihood of establishment compared to those with large propagules. The founding sex ratio can also impact establishment via its influence on mating success and offspring production. Our goal was to test the effects of propagule size and sex ratio on offspring production and annual population growth following introductions of a non-native lizard species (Anolis sagrei). We manipulated propagule composition on nine small islands, then examined offspring production, population growth and survival rate of founders and their descendants encompassing three generations. By the third reproductive season, per capita offspring production was higher on islands seeded with a relatively large propagule size, but population growth was not associated with propagule size. Propagule sex ratio did not affect offspring production, but populations with a female-biased propagule had positive growth, whereas those with a male-biased propagule had negative growth in the first year. Populations were not affected by propagule sex ratio in subsequent years, possibly due to rapid shifts towards balanced (or slightly female biased) population sex ratios. Overall, we show that different components of population fitness have different responses to propagule size and sex ratio in ways that could affect early stages of biological invasion. Despite these effects, the short life span and high fecundity of A. sagrei likely helped small populations to overcome Allee effects and enabled all populations to successfully establish. Our rare experimental manipulation of propagule size and sex ratio can inform predictions of colonisation dynamics in response to different compositions of founding populations, which is critical in the context of population ecology and invasion dynamics.


Lizards , Sex Ratio , Animals , Female , Male , Population Dynamics , Seasons
7.
Integr Zool ; 17(4): 550-566, 2022 Jul.
Article En | MEDLINE | ID: mdl-34002932

Vertebrate embryos require access to water; however, many species nest in terrestrial habitats that vary considerably in moisture content. Oviparous, non-avian reptiles have served as models to understand how environmental factors, like moisture availability, influence development because eggs are often exposed to prevailing environments in the absence of parental care. Though much research demonstrates the importance of water absorption by eggs, many ecological factors that influence moisture availability in natural nests have received little attention. For example, the type of substrate in which nests are constructed is understudied. We experimentally incubated eggs of the brown anole lizard (Anolis sagrei) in 2 naturally occurring nest substrates that were treated with varying amounts of water to determine how natural substrates influence development at different moisture concentrations. One substrate consisted of sand and crushed seashells and the other was mostly organic material (i.e. decayed plant material). Both are common nesting substrates at our field site. When controlling for water uptake by eggs, we found that egg survival and hatchling phenotypes were similar between substrates; however, embryos developed more quickly in the sand/shell substrate than the organic substrate, indicating substrate-specific effects on embryo physiology. These results demonstrate that different natural substrates can result in similar developmental outcomes if the water available to eggs is comparable; however, some aspects of development, like developmental rate, are affected by the type of substrate, independent of water availability. Further study is required to determine how natural substrates influence embryo physiology independent of water content.


Lizards , Sand , Animals , Ecosystem , Lizards/physiology , Nesting Behavior/physiology , Phenotype , Water/physiology
8.
Cells ; 10(9)2021 09 09.
Article En | MEDLINE | ID: mdl-34572018

Sperm competition is a widespread phenomenon that shapes male reproductive success. Ejaculates present many potential targets for postcopulatory selection (e.g., sperm morphology, count, and velocity), which are often highly correlated and potentially subject to complex multivariate selection. Although multivariate selection on ejaculate traits has been observed in laboratory experiments, it is unclear whether selection is similarly complex in wild populations, where individuals mate frequently over longer periods of time. We measured univariate and multivariate selection on sperm morphology, sperm count, and sperm velocity in a wild population of brown anole lizards (Anolis sagrei). We conducted a mark-recapture study with genetic parentage assignment to estimate individual reproductive success. We found significant negative directional selection and negative quadratic selection on sperm count, but we did not detect directional or quadratic selection on any other sperm traits, nor did we detect correlational selection on any trait combinations. Our results may reflect pressure on males to produce many small ejaculates and mate frequently over a six-month reproductive season. This study is the first to measure multivariate selection on sperm traits in a wild population and provides an interesting contrast to experimental studies of external fertilizers, which have found complex multivariate selection on sperm phenotypes.


Lizards/physiology , Spermatozoa/physiology , Animals , Female , Male , Phenotype , Sperm Count/methods
9.
PLoS One ; 16(3): e0245877, 2021.
Article En | MEDLINE | ID: mdl-33690637

The Argentine Black and White Tegu (Salvator merianae, formerly Tupinambis merianae) is a large lizard from South America. Now established and invasive in southern Florida, and it poses threats to populations of many native species. Models suggest much of the southern United States may contain suitable temperature regimes for this species, yet there is considerable uncertainty regarding either the potential for range expansion northward out of tropical and subtropical zones or the potential for the species establishing elsewhere following additional independent introductions. We evaluated survival, body temperature, duration and timing of winter dormancy, and health of wild-caught tegus from southern Florida held in semi-natural enclosures for over a year in Auburn, Alabama (> 900 km northwest of capture location). Nine of twelve lizards emerged from winter dormancy and seven survived the greater-than-one-year duration of the study. Average length of dormancy (176 d) was greater than that reported in the native range or for invasive populations in southern Florida and females remained dormant longer than males. Tegus grew rapidly throughout the study and the presence of sperm in the testes of males and previtellogenic or early vitellogenic follicles in female ovaries at the end of our study suggest the animals would have been capable of reproduction the following spring. The survival and overall health of the majority of adult tegus in our study suggests weather and climate patterns are unlikely to prevent survival following introduction in many areas of the United States far from their current invasive range.


Introduced Species , Lizards/physiology , Seasons , Animals , Energy Metabolism , Female , Lizards/metabolism , Male , Reproduction , Survival Analysis , Temperature
10.
J Exp Zool A Ecol Integr Physiol ; 335(1): 72-85, 2021 01.
Article En | MEDLINE | ID: mdl-32297716

Aspects of global change create stressful thermal environments that threaten biodiversity. Oviparous, non-avian reptiles have received considerable attention because eggs are left to develop under prevailing conditions, leaving developing embryos vulnerable to increases in temperature. Though many studies assess embryo responses to long-term (i.e., chronic), constant incubation temperatures, few assess responses to acute exposures which are more relevant for many species. We subjected brown anole (Anolis sagrei) eggs to heat shocks, thermal ramps, and extreme diurnal fluctuations to determine the lethal temperature of embryos, measure the thermal sensitivity of embryo heart rate and metabolism, and quantify the effects of sublethal but stressful temperatures on development and hatchling phenotypes and survival. Most embryos died at heat shocks of 45°C or 46°C, which is ~12°C warmer than the highest constant temperatures suitable for successful development. Heart rate and O2 consumption increased with temperature; however, as embryos approached the lethal temperature, heart rate and CO2 production continued rising while O2 consumption plateaued. These data indicate a mismatch between oxygen supply and demand at high temperatures. Exposure to extreme, diurnal fluctuations depressed embryo developmental rates and heart rates, and resulted in hatchlings with smaller body size, reduced growth rates, and lower survival in the laboratory. Thus, even brief exposure to extreme temperatures can have important effects on embryo development, and our study highlights the role of both immediate and cumulative effects of high temperatures on egg survival. Such effects must be considered to predict how populations will respond to global change.


Embryo, Nonmammalian/physiology , Heat-Shock Response , Lizards/embryology , Ovum/physiology , Oxygen/administration & dosage , Thermotolerance , Animals , Female , Male , Survival
11.
J Exp Biol ; 223(Pt 19)2020 10 08.
Article En | MEDLINE | ID: mdl-32778564

Natural thermal environments are notably complex and challenging to mimic in controlled studies. Consequently, our understanding of the ecological relevance and underlying mechanisms of organismal responses to thermal environments is often limited. For example, studies of thermal developmental plasticity have provided key insights into the ecological consequences of temperature variation, but most laboratory studies use treatments that do not reflect natural thermal regimes. While controlling other important factors, we compared the effects of naturally fluctuating temperatures with those of commonly used laboratory regimes on development of lizard embryos and offspring phenotypes and survival. We incubated eggs in four treatments: three that followed procedures commonly used in the literature, and one that precisely mimicked naturally fluctuating nest temperatures. To explore context-dependent effects, we replicated these treatments across two seasonal regimes: relatively cool temperatures from nests constructed early in the season and warm temperatures from late-season nests. We show that natural thermal fluctuations have a relatively small effect on developmental variables but enhance hatchling performance and survival at cooler temperatures. Thus, natural thermal fluctuations are important for successful development and simpler approximations (e.g. repeated sine waves, constant temperatures) may poorly reflect natural systems under some conditions. Thus, the benefits of precisely replicating real-world temperatures in controlled studies may outweigh logistical costs. Although patterns might vary according to study system and research goals, our methodological approach demonstrates the importance of incorporating natural variation into controlled studies and provides biologists interested in thermal ecology with a framework for validating the effectiveness of commonly used methods.


Lizards , Animals , Cold Temperature , Phenotype , Seasons , Temperature
12.
Physiol Biochem Zool ; 93(5): 339-346, 2020.
Article En | MEDLINE | ID: mdl-32692615

Embryonic development in oviparous organisms is fueled by maternally allocated yolk, and many organisms hatch before that energy store is used completely; the resultant leftover (residual) yolk is internalized and may support early posthatching life. However, embryos that use most, or all, of their yolk supply before hatching should hatch at a larger size than those that do not exhaust those energy reserves, which could also have benefits for posthatching growth and survival. To examine the trade-off between residual yolk and offspring size, we experimentally reduced yolk quantity at oviposition in lizard eggs (Amphibolurus muricatus) and then quantified offspring size and the amount of internalized residual yolk. This design enabled us to determine whether embryos (1) exhaust yolk supply during development (thereby maximizing neonatal size) or (2) reduce neonatal size by retaining yolk reserves at hatching. Our data support the latter scenario. Eggs from the yolk-reduced treatment produced smaller offspring with a proportion of residual yolk similar to that of offspring from unmanipulated eggs, suggesting that the fitness benefits of posthatching energy stores outweigh those of larger neonatal size.


Lizards/embryology , Lizards/growth & development , Animals , Body Size , Energy Metabolism
13.
J Anim Ecol ; 89(5): 1242-1253, 2020 05.
Article En | MEDLINE | ID: mdl-31994721

Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems. Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life-history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment). To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season. In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among-individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life-history theory. The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late-produced offspring likely enhances maternal fitness.


Life History Traits , Lizards , Animals , Female , Laboratories , Reproduction , Seasons
14.
Biol Lett ; 16(1): 20190716, 2020 01.
Article En | MEDLINE | ID: mdl-31937216

Extreme heat events are becoming more common as a result of anthropogenic global change. Developmental plasticity in physiological thermal limits could help mitigate the consequences of thermal extremes, but data on the effects of early temperature exposure on thermal limits later in life are rare, especially for vertebrate ectotherms. We conducted an experiment that to our knowledge is the first to isolate the effect of egg (i.e. embryonic) thermal conditions on adult heat tolerance in a reptile. Eggs of the lizard Anolis sagrei were incubated under one of three fluctuating thermal regimes that mimicked natural nest environments and differed in mean and maximum temperatures. After emergence, all hatchlings were raised under common garden conditions until reproductive maturity, at which point heat tolerance was measured. Egg mortality was highest in the warmest treatment, and hatchlings from the warmest treatment tended to have greater mortality than those from the cooler treatments. Despite evidence that incubation temperatures were stressful, we found no evidence that incubation treatment influenced adult heat tolerance. Our results are consistent with a low capacity for organisms to increase their physiological heat tolerance via plasticity, and emphasize the importance of behavioural and evolutionary processes as mechanisms of resilience to extreme heat.


Lizards , Thermotolerance , Animals , Biological Evolution , Environment , Hot Temperature , Temperature
15.
Physiol Biochem Zool ; 93(1): 62-74, 2020.
Article En | MEDLINE | ID: mdl-31808735

Developmental environments can have lasting effects on an individual's phenotype. In many reptiles, for example, egg incubation temperature permanently determines offspring sex (temperature-dependent sex determination, TSD) and also influences a suite of morphological, physiological, and behavioral traits. Thus, the contributions of sex and incubation temperature to phenotypic variation are difficult to identify because these factors are confounded under TSD. We used chemical manipulations to experimentally decouple gonadal sex and incubation temperature in a turtle with TSD (Chrysemys picta) to examine their relative and interactive effects on variation in incubation duration and offspring size. We show that warm incubation temperature accelerates development as expected and that exogenous estradiol treatment to eggs further shortens incubation duration across all incubation temperatures. Moreover, estradiol unexpectedly induced male development, resulting in male offspring hatching sooner than female offspring. Variation in offspring size was also influenced by incubation temperature and gonadal sex, but interactions between these two variables were relatively small or nonsignificant. The fitness consequences of these effects are unknown, but we provide preliminary results from our attempts at examining the long-term and sex-specific effects of incubation temperature. Manipulative experimental approaches, combined with longer-term experiments that track individuals through reproduction, will provide novel insights into the adaptive significance of developmental plasticity in long-lived organisms.


Body Size , Embryonic Development , Ovum/physiology , Turtles/embryology , Animals , Embryo, Nonmammalian/embryology , Female , Male , Sex Determination Processes , Sex Factors , Temperature
16.
Oecologia ; 191(3): 555-564, 2019 Nov.
Article En | MEDLINE | ID: mdl-31624957

Given that sperm production can be costly, theory predicts that males should optimally adjust the quantity and/or quality of their sperm in response to their social environment to maximize their paternity success. Although experiments demonstrate that males can alter their ejaculates in response to manipulations of the social environment and studies show that ejaculate traits covary with social environment across populations, it is unknown whether individual variation in sperm traits corresponds to natural variation found within wild populations. Using an island population of brown anole lizards (Anolis sagrei), we tested the prediction that sperm traits (sperm count, sperm morphology, sperm velocity) respond to natural variation in the risk of sperm competition, as inferred from the local density and operational sex ratio (OSR) of conspecifics. We found that males living in high-density areas of the island produced relatively larger sperm midpieces, smaller sperm heads, and lower sperm counts. Sperm traits were unrelated to OSR after accounting for the covariance between OSR and density. Our findings broaden the implications of sperm competition theory to intrapopulation social environment variation by showing that sperm count and sperm morphology vary with fine-scale differences in density within a single wild population.


Lizards , Animals , Islands , Male , Phenotype , Sex Ratio , Sexual Behavior, Animal , Spermatozoa
17.
J Exp Biol ; 222(Pt 19)2019 10 08.
Article En | MEDLINE | ID: mdl-31527177

Most studies of thermal tolerance use adults, but early-life stages (e.g. embryos) are often more sensitive to thermal agitation. Studies that examine effects on embryos rarely assess the potential for thermal tolerance to change with ontogeny or how effects differ among sympatric species, and often utilize unrealistic temperature treatments. We used thermal fluctuations from nests within the urban-heat island to determine how thermal tolerance of embryos changes across development and differs among two sympatric lizard species (Anolis sagrei and Anoliscristatellus). We applied fluctuations that varied in frequency and magnitude at different times during development and measured effects on embryo physiology and survival, and hatchling morphology, growth and survival. Thermal tolerance differed between the species by ∼2°C: embryos of A. sagrei, a lizard that prefers warmer, open-canopy microhabitats, were more robust to thermal stress than embryos of A. cristatellus, which prefers cooler, closed-canopy microhabitats. Moreover, thermal tolerance changed through development; however, the nature of this change differed between the species. For A. cristatellus, thermal tolerance was greatest mid-development. For A. sagrei, the relationship was not statistically clear. The greatest effects of thermal stress were on embryo and hatchling survival and embryo physiology. Hatchling morphology and growth were less affected. Inter-specific responses and the timing of stochastic thermal events with respect to development have important effects on embryo mortality. Thus, research that integrates ecologically meaningful thermal treatments, considers multiple life-history stages and examines interspecific responses will be critical to make robust predictions of the impacts of global change on wildlife.


Embryo, Nonmammalian/physiology , Hot Temperature , Islands , Lizards/physiology , Sympatry/physiology , Thermotolerance/physiology , Animals , Cities , Female , Heart Rate/physiology , Lizards/anatomy & histology , Models, Biological , Probability , Sample Size , Survival Analysis
18.
J Hered ; 110(4): 411-421, 2019 07 01.
Article En | MEDLINE | ID: mdl-30982894

Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However, organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals with ESD with regard to 2 traits predicted to be responsive to sex-ratio selection: 1) maternal oviposition behavior and 2) sensitivity of embryonic sex determination to environmental conditions, and much research has since focused on how these traits influence offspring sex ratios. However, relatively few studies have provided estimates of univariate quantitative genetic parameters for these 2 traits, and the existence of phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on 3 species of reptiles (2 turtle species and a lizard) with temperature-dependent sex determination (TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However, we detected no such covariance between measures of these categories of traits in the 3 study species. These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in embryos might evolve independently. Such information is critical to understand how animals with TSD will respond to rapidly changing environments that induce sex-ratio selection.


Biological Evolution , Embryonic Development , Maternal Behavior , Sex Determination Processes , Sex Ratio , Animals , Environment , Female , Male , Nesting Behavior , Quantitative Trait, Heritable , Temperature , Turtles
19.
Ecol Evol ; 9(5): 2791-2802, 2019 Mar.
Article En | MEDLINE | ID: mdl-30891217

Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco-evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness-related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common-garden experiment, indicating genetic differentiation or pre-ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among-population phenotypic variation in this system. Understanding spatial variation in key life-history traits provides an important perspective on adaptation to contemporary and future climatic conditions.

20.
Physiol Biochem Zool ; 91(6): 1129-1147, 2018.
Article En | MEDLINE | ID: mdl-30320532

The evolution of reproductive strategies depends on local environmental conditions. When environments are seasonal, selection favors individuals that align changes in key reproductive traits with seasonal shifts in habitat quality. Offspring habitat quality can decline through the season, and increased maternal provisioning to late-produced offspring may compensate. This shift, however, may depend on environmental factors that influence reproduction and are, themselves, subject to temporal changes (e.g., food abundance). We studied the brown anole lizard (Anolis sagrei) to demonstrate how prey abundance modifies seasonal changes in key reproductive traits. We bred lizards in controlled laboratory conditions across the reproductive season and manipulated the availability of food by providing some breeding pairs high prey availability and some low. Halfway through the season, we switched half of the breeding pairs to the opposite treatment. We measured growth of male and female lizards as well as latency to oviposit, fecundity, egg size, egg content (yolk, water, shell mass), and egg quality (steroid hormones, yolk caloric content) over this period. Higher prey availability enhanced lizard growth and some key reproductive traits (egg size, fecundity) but not others (egg content and quality). Moreover, we found that seasonal patterns of reproduction were modified by prey treatment in ways that have consequences for offspring survival. Our results demonstrate that seasonal changes in reproduction are dependent on fluctuations in local environmental conditions. Moreover, researchers must account for seasonal shifts in environmental factors and reproductive traits (and their interactions) when designing experiments and drawing conclusions about how the environment influences reproduction.


Food Chain , Life History Traits , Lizards/physiology , Animals , Female , Florida , Male , Random Allocation , Reproduction , Seasons
...