Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Neurol ; 31(1): e16063, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772343

RESUMEN

BACKGROUND AND PURPOSE: Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. METHODS: Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot-Marie-Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. RESULTS: The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. DISCUSSION: In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy.


Asunto(s)
Catarata , Enfermedad de Charcot-Marie-Tooth , Cristalinas , Humanos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación/genética , Pruebas Genéticas , Fenotipo , Cristalinas/genética , Catarata/genética , Linaje
2.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745519

RESUMEN

Introduction: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Methods: Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. Results: We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Discussion: Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.

3.
Mov Disord ; 37(5): 905-935, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481685

RESUMEN

In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Enfermedad de Parkinson , Trastornos Parkinsonianos , Distonía/genética , Trastornos Distónicos/genética , Humanos , Trastornos del Movimiento/genética , Trastornos Parkinsonianos/genética , Fenotipo
4.
J Neurosci ; 42(21): 4278-4296, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35440491

RESUMEN

Odors are transported by turbulent air currents, creating complex temporal fluctuations in odor concentration that provide a potentially informative stimulus dimension. We have shown that mice are able to discriminate odor stimuli based on their temporal structure, indicating that information contained in the temporal structure of odor plumes can be extracted by the mouse olfactory system. Here, using in vivo extracellular and intracellular electrophysiological recordings, we show that mitral cells (MCs) and tufted cells (TCs) of the male C57BL/6 mouse olfactory bulb can encode the dominant temporal frequencies present in odor stimuli up to at least 20 Hz. A substantial population of cell-odor pairs showed significant coupling of their subthreshold membrane potential with the odor stimulus at both 2 Hz (29/70) and the suprasniff frequency 20 Hz (24/70). Furthermore, mitral/tufted cells (M/TCs) show differential coupling of their membrane potential to odor concentration fluctuations with tufted cells coupling more strongly for the 20 Hz stimulation. Frequency coupling was always observed to be invariant to odor identity, and M/TCs that coupled well to a mixture also coupled to at least one of the components of the mixture. Interestingly, pharmacological blocking of the inhibitory circuitry strongly modulated frequency coupling of cell-odor pairs at both 2 Hz (10/15) and 20 Hz (9/15). These results provide insight into how both cellular and circuit properties contribute to the encoding of temporal odor features in the mouse olfactory bulb.SIGNIFICANCE STATEMENT Odors in the natural environment have a strong temporal structure that can be extracted and used by mice in their behavior. Here, using in vivo extracellular and intracellular electrophysiological techniques, we show that the projection neurons in the olfactory bulb can encode and couple to the dominant frequency present in an odor stimulus. Furthermore, frequency coupling was observed to be differential between mitral and tufted cells and was odor invariant but strongly modulated by local inhibitory circuits. In summary, this study provides insight into how both cellular and circuit properties modulate encoding of odor temporal features in the mouse olfactory bulb.


Asunto(s)
Odorantes , Bulbo Olfatorio , Animales , Interneuronas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Olfato/fisiología
5.
Mov Disord ; 37(6): 1131-1148, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35445419

RESUMEN

BACKGROUND: The second consensus criteria for the diagnosis of multiple system atrophy (MSA) are widely recognized as the reference standard for clinical research, but lack sensitivity to diagnose the disease at early stages. OBJECTIVE: To develop novel Movement Disorder Society (MDS) criteria for MSA diagnosis using an evidence-based and consensus-based methodology. METHODS: We identified shortcomings of the second consensus criteria for MSA diagnosis and conducted a systematic literature review to answer predefined questions on clinical presentation and diagnostic tools relevant for MSA diagnosis. The criteria were developed and later optimized using two Delphi rounds within the MSA Criteria Revision Task Force, a survey for MDS membership, and a virtual Consensus Conference. RESULTS: The criteria for neuropathologically established MSA remain unchanged. For a clinical MSA diagnosis a new category of clinically established MSA is introduced, aiming for maximum specificity with acceptable sensitivity. A category of clinically probable MSA is defined to enhance sensitivity while maintaining specificity. A research category of possible prodromal MSA is designed to capture patients in the earliest stages when symptoms and signs are present, but do not meet the threshold for clinically established or clinically probable MSA. Brain magnetic resonance imaging markers suggestive of MSA are required for the diagnosis of clinically established MSA. The number of research biomarkers that support all clinical diagnostic categories will likely grow. CONCLUSIONS: This set of MDS MSA diagnostic criteria aims at improving the diagnostic accuracy, particularly in early disease stages. It requires validation in a prospective clinical and a clinicopathological study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Encéfalo/patología , Consenso , Humanos , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas/diagnóstico , Atrofia de Múltiples Sistemas/patología , Estudios Prospectivos
6.
J Neural Eng ; 19(1)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35108701

RESUMEN

Objective.Extracellular microelectrode techniques are the most widely used approach to interrogate neuronal populations. However, regardless of the manufacturing method used, damage to the vasculature and circuit function during probe insertion remains a concern. This issue can be mitigated by minimising the footprint of the probe used. Reducing the size of probes typically requires either a reduction in the number of channels present in the probe, or a reduction in the individual channel area. Both lead to less effective coupling between the probe and extracellular signals of interest.Approach.Here, we show that continuously drawn SiO2-insulated ultra-microelectrode fibres offer an attractive substrate to address these challenges. Individual fibres can be fabricated to >10 m continuous stretches and a selection of diameters below 30µm with low resistance (<100 Ω mm-1) continuously conductive metal core of <10µm and atomically flat smooth shank surfaces. To optimize the properties of the miniaturised electrode-tissue interface, we electrodeposit rough Au structures followed by ∼20 nm IrOx film resulting in the reduction of the interfacial impedance to <500 kΩ at 1 kHz.Main results. We demonstrate that these ultra-low impedance electrodes can record and stimulate both single and multi-unit activity with minimal tissue disturbance and exceptional signal-to-noise ratio in both superficial (∼40µm) and deep (∼6 mm) structures of the mouse brain. Further, we show that sensor modifications are stable and probe manufacturing is reproducible.Significance.Minimally perturbing bidirectional neural interfacing can reveal circuit function in the mammalian brainin vivo.


Asunto(s)
Encéfalo , Dióxido de Silicio , Animales , Encéfalo/fisiología , Impedancia Eléctrica , Electrodos Implantados , Ratones , Microelectrodos , Neuronas/fisiología
7.
Nature ; 593(7860): 558-563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953395

RESUMEN

Odours are transported in turbulent plumes, which result in rapid concentration fluctuations1,2 that contain rich information about the olfactory scenery, such as the composition and location of an odour source2-4. However, it is unclear whether the mammalian olfactory system can use the underlying temporal structure to extract information about the environment. Here we show that ten-millisecond odour pulse patterns produce distinct responses in olfactory receptor neurons. In operant conditioning experiments, mice discriminated temporal correlations of rapidly fluctuating odours at frequencies of up to 40 Hz. In imaging and electrophysiological recordings, such correlation information could be readily extracted from the activity of mitral and tufted cells-the output neurons of the olfactory bulb. Furthermore, temporal correlation of odour concentrations5 reliably predicted whether odorants emerged from the same or different sources in naturalistic environments with complex airflow. Experiments in which mice were trained on such tasks and probed using synthetic correlated stimuli at different frequencies suggest that mice can use the temporal structure of odours to extract information about space. Thus, the mammalian olfactory system has access to unexpectedly fast temporal features in odour stimuli. This endows animals with the capacity to overcome key behavioural challenges such as odour source separation5, figure-ground segregation6 and odour localization7 by extracting information about space from temporal odour dynamics.


Asunto(s)
Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Movimientos del Aire , Animales , Conducta Animal , Condicionamiento Operante , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Odorantes , Técnicas de Placa-Clamp , Conducta Espacial , Factores de Tiempo
8.
Mov Disord Clin Pract ; 7(8): 955-960, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33163567

RESUMEN

BACKGROUND: Opicapone, a recently introduced catechol-o-methyl transferase (COMT) inhibitor has the advantage of being administered once daily, and has pharmacokinetic data to indicate it offers a greater degree of COMT inhibition than entacapone. Although trial data indicate it is non-inferior to entacapone, there are no data to indicate whether it offers any clinical advantages. METHODS: In this audit, we present data from 57 individuals prescribed opicapone at the National Hospital for Neurology and Neurosurgery, Queen Square who had either not tolerated or reported insufficient benefit following previous prescription of entacapone. RESULTS: A total of 20 of 57 patients switched directly from entacapone to opicapone ("entacapone switchers") whereas 37 of 57 patients had previously discontinued entacapone because of lack of benefit or adverse events ("entacapone failures"). A total of 21 of 57 (37%) patients stopped opicapone prior to 6 months. A total of 7 of 20 (35%) "entacapone switchers" experienced adverse events with opicapone of which 5 stopped the drug prior to the 6 month evaluation of efficacy. A total of 23 of 37 (62%) "entacapone failures" reported adverse events of which 16 stopped the drug. Among 36 of 57 (63%) patients who continued to use opicapone at 6 months, there was an improvement in OFF time of ~2 hours per day as measured by interview. CONCLUSIONS: We conclude that opicapone can be an effective additional treatment for wearing off in Parkinson's disease (PD) in a subgroup of patients. The use of opicapone in our cohort with prior entacapone exposure, however, was associated with higher rates of adverse effects and treatment discontinuation than reported in published trial data of COMT inhibitor naïve patients.

9.
Sci Rep ; 10(1): 17460, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060750

RESUMEN

Why lightning sometimes has multiple discharges to ground is an unanswered question. Recently, the observation of small plasma structures on positive leaders re-ignited the search. These small plasma structures were observed as pulsing radio sources along the positive leader length and were named "needles". Needles may be the missing link in explaining why lightning flickers with multiple discharges, but this requires further confirmation. In this work we present the first optical observations of these intriguing plasma structures. Our high-speed videos show needles blinking in slow motion in a sequential mode. We show that they are formed at unsuccessful leader branches, are as bright as the lightning leaders, and report several other optical characteristics.

10.
Mov Disord ; 34(9): 1307-1314, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31299107

RESUMEN

BACKGROUND: Studies on early-onset presentations of progressive supranuclear palsy (PSP) have been limited to those where a rare monogenic cause has been identified. Here, we have defined early-onset PSP (EOPSP) and investigated its genetic and clinico-pathological profile in comparison with late-onset PSP (LOPSP) and Parkinson's disease (PD). METHODS: We included subjects from the Queen Square Brain Bank, PROSPECT-UK study, and Tracking Parkinson's study. Group comparisons of data were made using Welch's t-test and Kruskal-Wallis analysis of variance. EOPSP was defined as the youngest decile of motor age at onset (≤55 years) in the Queen Square Brain Bank PSP case series. RESULTS: We identified 33 EOPSP, 328 LOPSP, and 2000 PD subjects. The early clinical features of EOPSP usually involve limb parkinsonism and gait freezing, with 50% of cases initially misdiagnosed as having PD. We found that an initial clinical diagnosis of EOPSP had lower diagnostic sensitivity (33%) and positive predictive value (38%) in comparison with LOPSP (80% and 76%) using a postmortem diagnosis of PSP as the gold standard. 3/33 (9%) of the EOPSP group had an underlying monogenic cause. Using a PSP genetic risk score (GRS), we showed that the genetic risk burden in the EOPSP (mean z-score, 0.59) and LOPSP (mean z-score, 0.48) groups was significantly higher (P < 0.05) when compared with the PD group (mean z-score, -0.08). CONCLUSIONS: The initial clinical profile of EOPSP is often PD-like. At the group level, a PSP GRS was able to differentiate EOPSP from PD, and this may be helpful in future diagnostic algorithms. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Diagnóstico Diferencial , Progresión de la Enfermedad , Femenino , Trastornos Neurológicos de la Marcha/genética , Trastornos Neurológicos de la Marcha/patología , Pruebas Genéticas , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Valor Predictivo de las Pruebas , Bancos de Tejidos , Adulto Joven
11.
Sci Rep ; 9(1): 9576, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270371

RESUMEN

Upward lightning studies took place in Rapid City, South Dakota, USA and S. Paulo, Brazil during the summer thunderstorm seasons from 2011 to 2016. One of the main objectives of these campaigns was to evaluate and characterize the triggering of upward positive leaders from tall objects due to preceding nearby flash activity. 110 upward flashes were observed with a combination of high- and standard-speed video and digital still cameras, electric field meters, fast electric-field antenna systems, and for two seasons, a Lightning Mapping Array. These data were analyzed, along with correlated lightning location system data, to determine the triggering flash type responsible for the initiation of upward leaders from towers. In this paper, we describe the various processes during flash activity that can trigger upward leaders from tall objects in the USA and in Brazil. We conclude that the most effective triggering component is the propagation of the in-cloud negative leader during the continuing current that follows a positive return stroke.

12.
Neurocase ; 24(4): 204-212, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30293517

RESUMEN

Verbal adynamia (impaired language generation, as during conversation) has not been assessed systematically in parkinsonian disorders. We addressed this in patients with Parkinson's dementia, progressive supranuclear palsy and corticobasal degeneration. All disease groups showed impaired verbal fluency and sentence generation versus healthy age-matched controls, after adjusting for general linguistic and executive factors. Dopaminergic stimulation in the Parkinson's group selectively improved verbal generation versus other cognitive functions. Voxel-based morphometry identified left inferior frontal and posterior superior temporal cortical correlates of verbal generation performance. Verbal adynamia warrants further evaluation as an index of language network dysfunction and dopaminergic state in parkinsonian disorders.


Asunto(s)
Trastornos Parkinsonianos/complicaciones , Trastornos del Habla/etiología , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Trastornos Parkinsonianos/fisiopatología , Trastornos del Habla/fisiopatología , Conducta Verbal
13.
Brain ; 139(Pt 7): 1904-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217339

RESUMEN

The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15 Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson's disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.


Asunto(s)
Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Adolescente , Adulto , Línea Celular , Niño , Preescolar , Estudios de Cohortes , Femenino , Fibroblastos , Humanos , Masculino , Mutación , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Tripeptidil Peptidasa 1 , Reino Unido , Adulto Joven
14.
Lancet Neurol ; 15(6): 585-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27017469

RESUMEN

BACKGROUND: Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. METHODS: We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on Aging, and International Parkinson's Disease Genomics Consortium studies), which were independent of the original reports of chromosome 22q11.2 deletion syndrome. We did case-control association analysis to compare the proportion of 22q11.2 deletions found, using the Fisher's exact test for the independent case-control studies and the Mantel-Haenszel test for the meta-analyses. We retrieved clinical details of patients with Parkinson's disease who had 22q11.2 deletions from the medical records of these patients. FINDINGS: We included array-based copy number variation data from 9387 patients with Parkinson's disease and 13 863 controls. Eight patients with Parkinson's disease and none of the controls had 22q11.2 deletions (p=0·00082). In the 8451 patients for whom age at onset data were available, deletions at 22q11.2 were associated with Parkinson's disease age at onset (Mann-Whitney U test p=0·001). Age at onset of Parkinson's disease was lower in patients carrying a 22q11.2 deletion (median 37 years, 95% CI 32·0-55·5; mean 42·1 years [SD 11·9]) than in those who did not carry a deletion (median 61 years, 95% CI 60·5-61·0; mean 60·3 years [SD 12·8]). A 22q11.2 deletion was present in more patients with early-onset (p<0·0001) and late-onset Parkinson's disease (p=0·016) than in controls, and in more patients with early-onset than late-onset Parkinson's disease (p=0·005). INTERPRETATION: Clinicians should be alert to the possibility of 22q11.2 deletions in patients with Parkinson's disease who have early presentation or features associated with the chromosome 22q11.2 deletion syndrome, or both. FUNDING: UK Medical Research Council, UK Wellcome Trust, Parkinson's UK, Patrick Berthoud Trust, National Institutes of Health, "Investissements d'Avenir" ANR-10-IAIHU-06, Dutch Parkinson Foundation (Parkinson Vereniging), Neuroscience Campus Amsterdam, National Institute for Health Research, National Institute on Aging, National Institutes of Health.


Asunto(s)
Síndrome de DiGeorge/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Comorbilidad , Variaciones en el Número de Copia de ADN , Síndrome de DiGeorge/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología
15.
Brain ; 138(Pt 12): 3567-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26598494

RESUMEN

Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis, paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the pathogenic mechanisms. We analysed all three genes (the whole coding regions of SLC2A1 and PRRT2 and exons one and two of PNKD) in a series of 145 families with paroxysmal dyskinesias as well as in a series of 53 patients with familial episodic ataxia and hemiplegic migraine to investigate the mutation frequency and type and the genetic and phenotypic spectrum. We examined the mRNA expression in brain regions to investigate how selective vulnerability could help explain the phenotypes and analysed the effect of mutations on patient-derived mRNA. Mutations in the PRRT2, SLC2A1 and PNKD genes were identified in 72 families in the entire study. In patients with paroxysmal movement disorders 68 families had mutations (47%) out of 145 patients. PRRT2 mutations were identified in 35% of patients, SLC2A1 mutations in 10%, PNKD in 2%. Two PRRT2 mutations were in familial hemiplegic migraine or episodic ataxia, one SLC2A1 family had episodic ataxia and one PNKD family had familial hemiplegic migraine alone. Several previously unreported mutations were identified. The phenotypes associated with PRRT2 mutations included a high frequency of migraine and hemiplegic migraine. SLC2A1 mutations were associated with variable phenotypes including paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, episodic ataxia and myotonia and we identified a novel PNKD gene deletion in familial hemiplegic migraine. We found that some PRRT2 loss-of-function mutations cause nonsense mediated decay, except when in the last exon, whereas missense mutations do not affect mRNA. In the PNKD family with a novel deletion, mRNA was truncated losing the C-terminus of PNKD-L and still likely loss-of-function, leading to a reduction of the inhibition of exocytosis, and similar to PRRT2, an increase in vesicle release. This study highlights the frequency, novel mutations and clinical and molecular spectrum of PRRT2, SLC2A1 and PNKD mutations as well as the phenotype-genotype overlap among these paroxysmal movement disorders. The investigation of paroxysmal movement disorders should always include the analysis of all three genes, but around half of our paroxysmal series remain genetically undefined implying that additional genes are yet to be identified.


Asunto(s)
Corea/genética , Heterogeneidad Genética , Transportador de Glucosa de Tipo 1/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Migraña con Aura/genética , Mutación/genética , Linaje , Fenotipo , ARN Mensajero/metabolismo , Adulto Joven
16.
Parkinsonism Relat Disord ; 20(7): 782-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24768614

RESUMEN

The dystonias are a clinical heterogeneous group with a complex genetic background. To gain more insight in genetic risk factors in dystonia we used a pathway sequence approach in patients with an extreme dystonia phenotype (n = 26). We assessed all coding and non-coding variants in candidate genes in D1-like subclass of dopamine receptor genes (DRD1, DRD5) and the synaptic vesicle pathway linked to torsinA (TOR1A, STON2, SNAPIN, KLC1 and THAP1), spanning 96 Kb. Two rare missense variants in DRD1 were found: c.68G>A(p.Arg23His) in the screening group and c.776C>A(p.Ser259Tyr) in an additional screen of 15 selected dystonia patients. Genetic burden analysis of DRD1 rare variants in patients (4.8%) versus European American controls from ESP (0.72%) reveals an OR 5.35 (95% CI 1.29-23.1). No rare missense SNVs in the synaptic vesicle pathway were found. Sequencing of TOR1A showed variant enrichment in haplotype 2, possibly accountable for contradictive results in previous association studies. Two new rare SNVs were detected in THAP1, including a nonsense mutation (p.Gln167Ter) and a splice site variant (c.72-1G>A). Screening for rare SNV of candidate pathways in a phenotype extreme population appears to be a promising alternative method to identify genetic risk factors in complex disorders like primary torsion dystonia. These findings indicate a role for rare genetic variation in dopamine processing genes in dystonia pathophysiology.


Asunto(s)
Variación Genética/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Mutación Missense/genética , Receptores de Dopamina D1/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Trastornos Distónicos/diagnóstico , Trastornos Distónicos/genética , Femenino , Humanos , Cinesinas , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
17.
J Neurol ; 260(5): 1234-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23299620

RESUMEN

Recent studies reported mutations in the gene encoding the proline-rich transmembrane protein 2 (PRRT2) to be causative for paroxysmal kinesigenic dyskinesia (PKD), PKD combined with infantile seizures (ICCA), and benign familial infantile seizures (BFIS). PRRT2 is a presynaptic protein which seems to play an important role in exocytosis and neurotransmitter release. PKD is the most common form of paroxysmal movement disorder characterized by recurrent brief involuntary hyperkinesias triggered by sudden movements. Here, we sequenced PRRT2 in 14 sporadic and 8 familial PKD and ICCA cases of Caucasian origin and identified three novel mutations (c.919C>T/p.Gln307, c.388delG/p.Ala130Profs 46, c.884G>A/p.Arg295Gln) predicting two truncated proteins and one probably damaging point mutation. A review of all published cases is also included. PRRT2 mutations occur more frequently in familial forms of PRRT2-related syndromes (80-100 %) than in sporadic cases (33-46 %) suggesting further heterogeneity in the latter. PRRT2 mutations were rarely described in other forms of paroxysmal dyskinesias deviating from classical PKD, as we report here in one ICCA family without kinesigenic triggers. Mutations are exclusively found in two exons of the PRRT2 gene at a high rate across all syndromes and with one major mutation (c.649dupC) in a mutational hotspot of nine cytosines, which is responsible for 57 % of all cases in all phenotypes. We therefore propose that genetic analysis rapidly performed in early stages of the disease is highly cost-effective and can help to avoid further unnecessary diagnostic and therapeutic interventions.


Asunto(s)
Corea/genética , Epilepsia Benigna Neonatal/genética , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Niño , Preescolar , Corea/complicaciones , Análisis Mutacional de ADN , Distonía , Epilepsia Benigna Neonatal/complicaciones , Salud de la Familia , Femenino , Humanos , Lactante , Masculino , Fenotipo , Adulto Joven
18.
Neurology ; 79(21): 2115-21, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23077024

RESUMEN

OBJECTIVE: The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). METHODS: The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. RESULTS: PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. CONCLUSIONS: This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders.


Asunto(s)
Ataxia/genética , Corea/genética , Proteínas de la Membrana/genética , Migraña con Aura/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Anciano , Ataxia/diagnóstico , Niño , Corea/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Migraña con Aura/diagnóstico , Linaje , Adulto Joven
19.
Am J Hum Genet ; 82(2): 510-5, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18252231

RESUMEN

The hereditary spastic paraplegias (HSPs) are a genetically and clinically heterogeneous group of upper-motor-neuron degenerative diseases characterized by selective axonal loss in the corticospinal tracts and dorsal columns. Although numerous mechanisms involving defective subcellular transportation, mitochondrial malfunction, and increased oxidative stress have been proposed, the pathogenic basis underlying the neuronal loss is unknown. We have performed linkage analysis to refine the extent of the SPG5 disease locus and conducted sequence analysis of the genes located within this region. This identified sequence alterations in the cytochrome P450-7B1 (CYP7B1) associated with this pure form of HSP. In the liver, CYP7B1 offers an alternative pathway for cholesterol degradation and also provides the primary metabolic route for the modification of dehydroepiandrosterone neurosteroids in the brain. These findings provide the first direct evidence of a pivotal role of altered cholesterol metabolism in the pathogenesis of motor-neuron degenerative disease and identify a potential for therapeutic intervention in this form of HSP.


Asunto(s)
Colesterol/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Homeostasis/genética , Paraplejía Espástica Hereditaria/genética , Esteroide Hidroxilasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Familia 7 del Citocromo P450 , Humanos , Hígado/metabolismo , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN , Paraplejía Espástica Hereditaria/metabolismo
20.
Clin Cancer Res ; 13(2 Pt 1): 540-9, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17255276

RESUMEN

PURPOSE: We examined in vivo particle-mediated epidermal delivery (PMED) of cDNAs for gp100 and granulocyte macrophage colony-stimulating factor (GM-CSF) into uninvolved skin of melanoma patients. The aims of this phase I study were to assess the safety and immunologic effects of PMED of these genes in melanoma patients. EXPERIMENTAL DESIGN: Two treatment groups of six patients each were evaluated. Group I received PMED with cDNA for gp100, and group II received PMED with cDNA for GM-CSF followed by PMED for gp100 at the same site. One vaccine site per treatment cycle was biopsied and divided for protein extraction and sectioning to assess transgene expression, gold-bead penetration, and dendritic cell infiltration. Exploratory immunologic monitoring of HLA-A2(+) patients included flow cytometric analyses of peripheral blood lymphocytes and evaluation of delayed-type hypersensitivity to gp100 peptide. RESULTS: Local toxicity in both groups was mild and resolved within 2 weeks. No systemic toxicity could be attributed to the vaccines. Monitoring for autoimmunity showed no induction of pathologic autoantibodies. GM-CSF transgene expression in vaccinated skin sites was detected. GM-CSF and gp100 PMED yielded a greater infiltration of dendritic cells into vaccine sites than did gp100 PMED only. Exploratory immunologic monitoring suggested modest activation of an antimelanoma response. CONCLUSIONS: PMED with cDNAs for gp100 alone or in combination with GM-CSF is well tolerated by patients with melanoma. Moreover, pathologic autoimmunity was not shown. This technique yields biologically active transgene expression in normal human skin. Although modest immune responses were observed, additional investigation is needed to determine how to best utilize PMED to induce antimelanoma immune responses.


Asunto(s)
Administración Cutánea , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Melanoma/tratamiento farmacológico , Glicoproteínas de Membrana/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/metabolismo , Adulto , Anciano , Autoinmunidad , Biopsia , ADN Complementario/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Piel/patología , Vacunas de ADN , Antígeno gp100 del Melanoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...