Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673906

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Adipose Tissue , Inflammation , Mitochondria , Particulate Matter , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Particulate Matter/adverse effects , Particulate Matter/toxicity , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Male , Mice, Inbred C57BL , Energy Metabolism/drug effects , Adipokines/metabolism , Air Pollutants/adverse effects , Air Pollutants/toxicity , Adipocytes/metabolism , Adipocytes/drug effects
2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article En | MEDLINE | ID: mdl-38068958

Alzheimer's disease (AD) is the most common form of neurodegenerative disease worldwide. A large body of work implicates insulin resistance in the development and progression of AD. Moreover, impairment in mitochondrial function, a common symptom of insulin resistance, now represents a fundamental aspect of AD pathobiology. Ceramides are a class of bioactive sphingolipids that have been hypothesized to drive insulin resistance. Here, we describe preliminary work that tests the hypothesis that hyperinsulinemia pathologically alters cerebral mitochondrial function in AD mice via accrual of the ceramides. Homozygous male and female ApoE4 mice, an oft-used model of AD research, were given chronic injections of PBS (control), insulin, myriocin (an inhibitor of ceramide biosynthesis), or insulin and myriocin over four weeks. Cerebral ceramide content was assessed using liquid chromatography-mass spectrometry. Mitochondrial oxygen consumption rates were measured with high-resolution respirometry, and H2O2 emissions were quantified via biochemical assays on brain tissue from the cerebral cortex. Significant increases in brain ceramides and impairments in brain oxygen consumption were observed in the insulin-treated group. These hyperinsulinemia-induced impairments in mitochondrial function were reversed with the administration of myriocin. Altogether, these data demonstrate a causative role for insulin in promoting brain ceramide accrual and subsequent mitochondrial impairments that may be involved in AD expression and progression.


Hyperinsulinism , Insulin Resistance , Neurodegenerative Diseases , Mice , Male , Female , Animals , Insulin/metabolism , Ceramides/metabolism , Apolipoprotein E4/metabolism , Hydrogen Peroxide/metabolism , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Insulin, Regular, Human , Energy Metabolism , Hyperinsulinism/metabolism
3.
Nutrients ; 15(20)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37892529

Yerba maté, a herbal tea derived from Ilex paraguariensis, has previously been reported to be protective against obesity-related and other cardiometabolic disorders. Using high-resolution respirometry and reverse-phase high-performance liquid chromatography, the effects of four weeks of yerba maté consumption on mitochondrial efficiency and cellular redox status in skeletal muscle, adipose, and liver, tissues highly relevant to whole-body metabolism, were explored in healthy adult mice. Yerba maté treatment increased the mitochondrial oxygen consumption in adipose but not in the other examined tissues. Yerba maté increased the ATP concentration in skeletal muscle and decreased the ATP concentration in adipose. Combined with the observed changes in oxygen consumption, these data yielded a significantly higher ATP:O2, a measure of mitochondrial efficiency, in muscle and a significantly lower ATP:O2 in adipose, which was consistent with yerba maté-induced weight loss. Yerba maté treatment also altered the hepatic glutathione (GSH)/glutathione disulfide (GSSG) redox potential to a more reduced redox state, suggesting the treatment's potential protective effects against oxidative stress and for the preservation of cellular function. Together, these data indicate the beneficial, tissue-specific effects of yerba maté supplementation on mitochondrial bioenergetics and redox states in healthy mice that are protective against obesity.


Ilex paraguariensis , Mice , Animals , Ilex paraguariensis/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Obesity/metabolism , Dietary Supplements , Muscle, Skeletal/metabolism , Oxidation-Reduction , Adenosine Triphosphate/metabolism
4.
Metabolites ; 12(11)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36355101

Mitochondrial dysfunction and cognitive impairment are common symptoms in many neurologic and psychiatric disorders, as well as nonpathological aging. Ketones have been suggested as therapeutic for their efficacy in epilepsy and other brain pathologies such as Alzheimer's disease and major depressive disorder. However, their effects on cognitive function in healthy individuals is less established. Here, we explored the mitochondrial and performative outcomes of a novel eight-week ketone-supplemented ketogenic (KETO) diet in healthy adult male and female mice. In a novel object recognition test, KETO mice spent more time with the novel, compared to familiar, object, indicating an improvement in recognition memory. High-resolution respirometry on permeabilized hippocampal tissue returned significant reductions in mitochondrial O2 consumption. No changes in ATP production were observed, yielding a significantly higher ATP:O2 ratio, a measure of mitochondrial efficiency. Together, these findings demonstrate the KETO diet improves hippocampal mitochondrial efficiency. They add to a growing body of evidence that suggests ketones and ketogenic diets are neuroprotective and metabolically and cognitively relevant, even in healthy adults. They also suggest that ketogenic lifestyle changes may be effective strategies for protecting against cognitive decline associated with aging and disease.

...