Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37763564

RESUMEN

The importance of amorphous and nanocrystalline Fe-based soft magnetic materials is increasing annually. Thus, characterisation of the chemical compositions, alloying additives, and crystal structures is significant for obtaining the appropriate functional properties. The purpose of this work is to present comparative studies on the influence of Nb (1, 2, 3 at.%) and Mo (1, 2, 3 at.%) in Fe substitution on the thermal stability, crystal structure, and magnetic properties of a rapidly quenched Fe79.4Co5Cu0.6B15 alloy. Additional heat treatments in a vacuum (260-640 °C) were performed for all samples based on the crystallisation kinetics. Substantial improvement in thermal stability was achieved with increasing Nb substitution, while this effect was less noticeable for Mo-containing alloys. The heat treatment optimisation process showed that the least lossy states (with a minimum value of coercivity below 10 A/m and high saturation induction up to 1.7 T) were the intermediate state of the relaxed amorphous state and the nanocomposite state of nanocrystals immersed in the amorphous matrix obtained by annealing in the temperature range of 340-360 °C for 20 min. Only for the alloy with the highest thermal stability (Nb = 3%), the α-Fe(Co) nanograin grows, without the co-participation of the hard magnetic Fe3B, in a relatively wide range of annealing temperatures up to 460 °C, where the second local minimum in coercivity and core power losses exists. For the remaining annealed alloys, due to lower thermal stability than the Nb = 3% alloy, the Fe3B phase starts to crystallise at lower annealing temperatures, making an essential contribution to magneto-crystalline anisotropy, thus the substantial increase in coercivity and induction saturation. The air-annealing process tested on the studied alloys for optimal annealing conditions has potential use for this type of material. Additionally, optimally annealed Mo-containing alloys are less lossy materials than Nb-containing alloys in a frequency range up to 400 kHz and magnetic induction up to 0.8 T.

2.
Biomater Adv ; 153: 213582, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591178

RESUMEN

The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.


Asunto(s)
Neoplasias Óseas , Quercetina , Humanos , Quercetina/farmacología , Flavonoides , Apoptosis , Disponibilidad Biológica
3.
Sci Rep ; 12(1): 5733, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388058

RESUMEN

The role of transition metals (TMs) addition on the formation and crystallization of amorphous Al85TMs10Y5 alloys was described using in-situ high-temperature X-ray diffraction. The structural results were compared with differential scanning calorimetry and dynamical mechanical analysis to obtain detailed information about the nucleation and growth of crystalline phases. The performed analysis confirmed that Fe and Cu addition drastically changes the crystallization temperature and the phase composition of the fully crystallized alloys. While for Al85Ni10Y5 alloy, the second crystallization step is related to the formation of Al19Ni5Y3 phase, for Al85(Ni, Fe)10Y5 and Al85(Ni, Fe, Cu)10Y5 alloys crystallization of Al15Fe9Y2 phase was observed. Interestingly, the performed analysis showed that forming a homogenous amorphous phase is not necessary to obtain the best corrosion resistance. It was noted that the precipitation of the YCr2Al20 phase in the Cu-rich amorphous matrix should be a much more interesting approach.

4.
Materials (Basel) ; 14(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947399

RESUMEN

In this work, based on the thermodynamic prediction, the comprehensive studies of the influence of Cu for Fe substitution on the crystal structure and magnetic properties of the rapidly quenched Fe85B15 alloy in the ribbon form are performed. Using thermodynamic calculations, the parabolic shape dependence of the ΔGamoprh with a minimum value at 0.6% of Cu was predicted. The ΔGamoprh from the Cu content dependence shape is also asymmetric, and, for Cu = 0% and Cu = 1.5%, the same ΔGamoprh value is observed. The heat treatment optimization process of all alloys showed that the least lossy (with a minimum value of core power losses) is the nanocomposite state of nanocrystals immersed in an amorphous matrix obtained by annealing in the temperature range of 300-330 °C for 20 min. The minimum value of core power losses P10/50 (core power losses at 1T@50Hz) of optimally annealed Fe85-xCuxB15 x = 0,0.6,1.2% alloys come from completely different crystallization states of nanocomposite materials, but it strongly correlates with Cu content and, thus, a number of nucleation sites. The TEM observations showed that, for the Cu-free alloy, the least lossy crystal structure is related to 2-3 nm short-ordered clusters; for the Cu = 0.6% alloy, only the limited value of several α-Fe nanograins are found, while for the Cu-rich alloy with Cu = 1.2%, the average diameter of nanograins is about 26 nm, and they are randomly distributed in the amorphous matrix. The only high number of nucleation sites in the Cu = 1.2% alloy allows for a sufficient level of grains' coarsening of the α-Fe phase that strongly enhances the ferromagnetic exchange between the α-Fe nanocrystals, which is clearly seen with the increasing value of saturation induction up to 1.7T. The air-annealing process tested on studied alloys for optimal annealing conditions proves the possibility of its use for this type of material.

5.
Materials (Basel) ; 14(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34885551

RESUMEN

In this study, high-density magnesium diboride (MgB2) bulk superconductors were synthesized by spark plasma sintering (SPS) under pressure to improve the field dependence of the critical current density (Jc-B) in MgB2 bulk superconductors. We investigated the relationship between sintering conditions (temperature and time) and Jc-B using two methods, ex situ (sintering MgB2 synthesized powder) and in situ (reaction sintering of Mg and B powder), respectively. As a result, we found that higher density with suppressed particle growth and suppression of the formation of coarse particles of MgB4 and MgO were found to be effective in improving the Jc-B characteristics. In the ex situ method, the degradation of MgB2 due to pyrolysis was more severe at temperatures higher than 850 °C. The sample that underwent SPS treatment for a short time at 850 °C showed higher density and less impurity phase in the bulk, which improved the Jc-B properties. In addition, the in situ method showed very minimal impurity with a corresponding improvement in density and Jc-B characteristics for the sample optimized at 750 °C. Microstructural characterization and flux pinning (fP) analysis revealed the possibility of refined MgO inclusions and MgB4 phase as new pinning centers, which greatly contributed to the Jc-B properties. The contributions of the sintering conditions on fP for both synthesis methods were analyzed.

6.
Materials (Basel) ; 14(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557314

RESUMEN

The effect of substitution of Fe by Cu on the crystal structure and magnetic properties of Fe72-xNi8Nb4CuxSi2B14 alloys (x = 0.6, 1.1, 1.6 at.%) in the form of ribbons was investigated. The chemical composition of the materials was established on the basis of the calculated minima of thermodynamic parameters: Gibbs free energy of amorphous phase formation ΔGamorph (minimum at 0.6 at.% of Cu) and Gibbs free energy of mixing ΔGmix (minimum at 1.6 at.% of Cu). The characteristic crystallization temperatures Tx1onset and Tx1 of the alpha-iron phase together with the activation energy Ea for the as-spun samples were determined by differential scanning calorimetry (DSC) with a heating rate of 10-100 °C/min. In order to determine the optimal soft magnetic properties, the wound cores were subjected to a controlled isothermal annealing process in the temperature range of 340-640 °C for 20 min. Coercivity Hc, saturation induction Bs and core power losses at B = 1 T and frequency f = 50 Hz P10/50 were determined for all samples. Moreover, for the samples with the lowest Hc and P10/50, the magnetic losses were determined in a wider frequency range 50 Hz-400 kHz. The real and imaginary parts of the magnetic permeability µ', µâ€³ along with the cut-off frequency were determined for the samples annealed at 360, 460, and 560 °C. The best soft magnetic properties (i.e., the lowest value of Hc and P10/50) were observed for samples annealed at 460 °C, with Hc = 4.88-5.69 A/m, Bs = 1.18-1.24 T, P10/50 = 0.072-0.084 W/kg, µ' = 8350-10,630 and cutoff frequency at 8-9.3 × 104 Hz. The structural study of as-spun and annealed ribbons was carried out using X-ray diffraction (XRD) and a transmission electron microscope (TEM).

7.
Materials (Basel) ; 14(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375057

RESUMEN

The complex structural and magnetic studies of the annealed rapidly quenched Cu-free Fe72Ni8Nb4Si2B14 alloy (metallic ribbons form) are reported here. Based on the calorimetric results, the conventional heat treatment process (with heating rate 10 °C/min and subsequent isothermal annealing for 20 min) for wound toroidal cores has been optimized to obtain the least lossy magnetic properties (for the minimum value of coercivity and magnetic core losses at 50 Hz). For optimal conditions, the complex permeability in the 104-108 Hz frequency range together with core power losses obtained from magnetic induction dependence up to the frequency of 400 kHz was successfully measured. The average and local crystal structure was investigated by the use of the X-ray diffraction method and the transmission electron microscopy observations and proved its fully glassy state. Additionally, for the three temperature values, i.e., 310, 340 and 370 °C, the glass relaxation process study in the function of annealing time was carried out to obtain a deeper insight into the soft magnetic properties: magnetic permeability and cut-off frequency. For this type of Cu-free soft magnetic materials, the control of glass relaxation process (time and temperature) is extremely important to obtain proper magnetic properties.

8.
Materials (Basel) ; 13(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32209972

RESUMEN

Influence of Cu content on thermodynamic parameters (configurational entropy, Gibbs free energy of mixing, Gibbs free energy of amorphous phase formation), crystallization kinetics, structure and magnetic properties of Fe86-xCuxB14 (x = 0, 0.4, 0.55, 0.7, 1) alloys is investigated. The chemical composition has been optimized using a thermodynamic approach to obtain a minimum of Gibbs free energy of amorphous phase formation (minimum at 0.55 at.% of Cu). By using differential scanning calorimetry method the crystallization kinetics of amorphous melt-spun ribbons was analyzed. It was found that the average activation energy of α-Fe phase crystallization is in the range from 201.8 to 228.74 kJ/mol for studied samples. In order to obtain the lowest power core loss values, the isothermal annealing process was optimized in the temperature range from 260 °C to 400 °C. Materials annealed at optimal temperature had power core losses at 1 T/50 Hz-0.13-0.25 W/kg, magnetic saturation-1.47-1.6 T and coercivity-9.71-13.1 A/m. These samples were characterized by the amorphous structure with small amount of α-Fe nanocrystallites. The studies of complex permeability allowed to determine a minimum of both permeability values at 0.55 at.% of Cu. At the end of this work a correlation between thermodynamic parameters and kinetics, structure and magnetic properties were described.

9.
Materials (Basel) ; 13(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092947

RESUMEN

The effects of Co for Fe substitution on magnetic properties, thermal stability and crystal structure of Fe85.45-xCoxCu0.55B14 (x = 0, 2.5, 5, 7.5, 10) melt spun amorphous alloys were investigated. The Cu content was firstly optimized to minimize the energy of amorphous phase formation by the use of a thermodynamic approach. The formation of crystalline α-Fe type phase has been described using differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. The classical heat treatment process (with heating rate 10 °C/min) in vacuum for wound toroidal cores was optimized in the temperature range from 280 to 430 °C in order to obtain the best magnetic properties (magnetic saturation Bs and coercivity Hc obtained from the B(H) dependencies) at 50 Hz frequency. For optimal heat-treated samples, the complex magnetic permeability in the frequencies 104-108 Hz at room temperature was measured. Finally, magnetic core losses were obtained for 1 T/50 Hz and 1.5 T/50 Hz values for samples annealed at T = 310 °C. An analysis of transmission electron microscope images and electron diffraction patterns confirmed that high magnetic parameters are related to the coexistence of the amorphous and nanocrystalline phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...