Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863314

RESUMEN

Nicotiana benthamiana is predominantly distributed in arid habitats across northern Australia. However, none of six geographically isolated accessions shows obvious xerophytic morphological features. To investigate how these tender-looking plants withstand drought, we examined their responses to water deprivation, assessed phenotypic, physiological, and cellular responses, and analysed cuticular wax composition and wax biosynthesis gene expression profiles. Results showed that the Central Australia (CA) accession, globally known as a research tool, has evolved a drought escape strategy with early vigour, short life cycle, and weak, water loss-limiting responses. By contrast, a northern Queensland (NQ) accession responded to drought by slowing growth, inhibiting flowering, increasing leaf cuticle thickness, and altering cuticular wax composition. Under water stress, NQ increased the heat stability and water impermeability of its cuticle by extending the carbon backbone of cuticular long-chain alkanes from c. 25 to 33. This correlated with rapid upregulation of at least five wax biosynthesis genes. In CA, the alkane chain lengths (c. 25) and gene expression profiles remained largely unaltered. This study highlights complex genetic and environmental control over cuticle composition and provides evidence for divergence into at least two fundamentally different drought response strategies within the N. benthamiana species in < 1 million years.

2.
Front Plant Sci ; 15: 1404160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863537

RESUMEN

Tomato Yellow Leaf Curl Virus (TYLCV) is one of the most devastating pathogens of tomato, worldwide. It is vectored by the globally prevalent whitefly, Bemisia tabaci, and is asymptomatic in a wide range of plant species that act as a virus reservoir. The most successful crop protection for tomato in the field has been from resistance genes, of which five loci have been introgressed fromwild relatives. Of these, the Ty-1/Ty-3 locus, which encodes an RNA-dependent RNA polymerase 3 (RDR3), has been the most effective. Nevertheless, several TYLCV strains that break this resistance are beginning to emerge, increasing the need for new sources of resistance. Here we use segregation analysis and CRISPR-mediated gene dysfunctionalisation to dissect the differential response of two isolates of Nicotiana benthamiana to TYLCV infection. Our study indicates the presence of a novel non-RDR3, but yet to be identified, TYLCV resistance gene in a wild accession of N. benthamiana. This gene has the potential to be incorporated into tomatoes.

4.
Nat Plants ; 9(9): 1558-1571, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563457

RESUMEN

Nicotiana benthamiana is an invaluable model plant and biotechnology platform with a ~3 Gb allotetraploid genome. To further improve its usefulness and versatility, we have produced high-quality chromosome-level genome assemblies, coupled with transcriptome, epigenome, microRNA and transposable element datasets, for the ubiquitously used LAB strain and a related wild accession, QLD. In addition, single nucleotide polymorphism maps have been produced for a further two laboratory strains and four wild accessions. Despite the loss of five chromosomes from the ancestral tetraploid, expansion of intergenic regions, widespread segmental allopolyploidy, advanced diploidization and evidence of recent bursts of Copia pseudovirus (Copia) mobility not seen in other Nicotiana genomes, the two subgenomes of N. benthamiana show large regions of synteny across the Solanaceae. LAB and QLD have many genetic, metabolic and phenotypic differences, including disparate RNA interference responses, but are highly interfertile and amenable to genome editing and both transient and stable transformation. The LAB/QLD combination has the potential to be as useful as the Columbia-0/Landsberg errecta partnership, utilized from the early pioneering days of Arabidopsis genomics to today.


Asunto(s)
Arabidopsis , Nicotiana , Nicotiana/genética , Multiómica , Sintenía , Genómica , Biotecnología , Arabidopsis/genética , Genoma de Planta
5.
J Exp Bot ; 74(7): 2239-2250, 2023 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-36477559

RESUMEN

To be properly expressed, genes need to be accompanied by a terminator, a region downstream of the coding sequence that contains the information necessary for the maturation of the mRNA 3' end. The main event in this process is the addition of a poly(A) tail at the 3' end of the new transcript, a critical step in mRNA biology that has important consequences for the expression of genes. Here, we review the mechanism leading to cleavage and polyadenylation of newly transcribed mRNAs and how this process can affect the final levels of gene expression. We give special attention to an aspect often overlooked, the effect that different terminators can have on the expression of genes. We also discuss some exciting findings connecting the choice of terminator to the biogenesis of small RNAs, which are a central part of one of the most important mechanisms of regulation of gene expression in plants.


Asunto(s)
Poliadenilación , Regiones Terminadoras Genéticas , Secuencia de Bases , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica , Transcripción Genética
6.
Plant Cell Environ ; 45(8): 2476-2491, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35689480

RESUMEN

Inter-tissue communication is instrumental to coordinating the whole-body level behaviour for complex multicellular organisms. However, little is known about the regulation of inter-tissue information exchange. Here we carried out genetic screens for root-to-shoot mobile silencing in Arabidopsis plants with a compromised small RNA-mediated gene silencing movement rate and identified radical-induced cell death 1 (RCD1) as a critical regulator of root-shoot communication. RCD1 belongs to a family of poly (ADP-ribose) polymerase proteins, which are highly conserved across land plants. We found that RCD1 coordinates symplastic and apoplastic movement by modulating the sterol level of lipid rafts. The higher superoxide production in rcd1-knockout plants resulted in lower plasmodesmata (PD) frequency and altered PD structure in the symplasm of the hypocotyl cortex. Furthermore, the mutants showed increased lateral area of tracheary pits, which reduced axial movement. Our study highlights a novel mechanism through which root-to-shoot long-distance signalling can be modulated both symplastically and apoplastically.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Raíces de Plantas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Especies Reactivas de Oxígeno/metabolismo
7.
Front Plant Sci ; 13: 877793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651775

RESUMEN

The role of terminators is more commonly associated with the polyadenylation and 3' end formation of new transcripts. Recent evidence, however, suggests that this regulatory region can have a dramatic impact on gene expression. Nonetheless, little is known about the molecular mechanisms leading to the improvements associated with terminator usage in plants and the different elements in a plant terminator. Here, we identified an element in the Arabidopsis HSP18.2 terminator (tHSP) to be essential for the high level of expression seen for transgenes under the regulation of this terminator. Our molecular analyses suggest that this newly identified sequence acts to improve transcription termination, leading to fewer read-through events and decreased amounts of small RNAs originating from the transgene. Besides protecting against silencing, the tHSP-derived sequence positively impacts splicing efficiency, helping to promote gene expression. Moreover, we show that this sequence can be used to generate chimeric terminators with enhanced efficiency, resulting in stronger transgene expression and significantly expanding the availability of efficient terminators that can be part of good expression systems. Thus, our data make an important contribution toward a better understanding of plant terminators, with the identification of a new element that has a direct impact on gene expression, and at the same time, creates new possibilities to modulate gene expression via the manipulation of 3' regulatory regions.

8.
Commun Biol ; 5(1): 497, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614138

RESUMEN

Immunity cell-surface receptors Ve1 and Ve2 protect against fungi of the genus Verticillium causing early dying, a worldwide disease in many crops. Characterization of microbe-associated molecular pattern immunity receptors has advanced our understanding of disease resistance but signal amplification remains elusive. Here, we report that transgenic plants expressing Ve1 and Ve2 together, reduced pathogen titres by a further 90% compared to plants expressing only Ve1 or Ve2. Confocal and immunoprecipitation confirm that the two receptors associate to form heteromeric complexes in the absence of the ligand and positively regulate signaling. Bioassays show that the Ve1Ve2 complex activates race-specific amplified immunity to the pathogen through a rapid burst of reactive oxygen species (ROS). These results indicate a mechanism by which the composition of a cell-surface receptor heterocomplex may be optimized to increase immunity against devastating plant diseases.


Asunto(s)
Resistencia a la Enfermedad , Solanum lycopersicum , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Transducción de Señal
9.
Curr Opin Biotechnol ; 73: 88-94, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34348216

RESUMEN

For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences. Here, we highlight that stepping up to meet this grand challenge will increasingly require thinking 'beyond the gene'. Significant progress has been made in understanding the contributions of both epigenetic variation and cis-regulatory variation to plant traits. This non-genic variation has great potential in future breeding, synthetic biology and biotechnology applications.


Asunto(s)
Epigenómica , Fitomejoramiento , Biotecnología , Epigénesis Genética/genética , Fenotipo
10.
Viruses ; 12(12)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348905

RESUMEN

Plant viruses are commonly vectored by flying or crawling animals, such as aphids and beetles, and cause serious losses in major agricultural and horticultural crops. Controlling virus spread is often achieved by minimizing a crop's exposure to the vector, or by reducing vector numbers with compounds such as insecticides. A major, but less obvious, factor not controlled by these measures is Homo sapiens. Here, we discuss the inconvenient truth of how humans have become superspreaders of plant viruses on both a local and a global scale.


Asunto(s)
Productos Agrícolas/virología , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Cambio Climático , Vectores de Enfermedades , Humanos , Enfermedades de las Plantas/prevención & control , Virus de Plantas/crecimiento & desarrollo
11.
Front Plant Sci ; 11: 579376, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983223

RESUMEN

Transitivity in plants is a mechanism that produces secondary small interfering RNAs (siRNAs) from a transcript targeted by primary small RNAs (sRNAs). It expands the silencing signal to additional sequences of the transcript. The process requires RNA-dependent RNA polymerases (RDRs), which convert single-stranded RNA targets into a double-stranded (ds) RNA, the precursor of siRNAs and is critical for effective and amplified responses to virus infection. It is also important for the production of endogenous secondary siRNAs, such as phased siRNAs (phasiRNAs), which regulate several genes involved in development and adaptation. Transitivity on endogenous transcripts is very specific, utilizing special primary sRNAs, such as miRNAs with unique features, and particular ARGONAUTEs. In contrast, transitivity on transgene and virus (exogenous) transcripts is more generic. This dichotomy of responses implies the existence of a mechanism that differentiates self from non-self targets. In this work, we examine the possible mechanistic process behind the dichotomy and the intriguing counter-intuitive directionality of transitive sequence-spread in plants.

12.
Plant J ; 104(1): 96-112, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603508

RESUMEN

Transgenes have become essential to modern biology, being an important tool in functional genomic studies and also in the development of biotechnological products. One of the major challenges in the generation of transgenic lines concerns the expression of transgenes, which, compared to endogenes, are particularly susceptible to silencing mediated by small RNAs (sRNAs). Several reasons have been put forward to explain why transgenes often trigger the production of sRNAs, such as the high level of expression induced by commonly used strong constitutive promoters, the lack of introns, and features resembling viral and other exogenous sequences. However, the relative contributions of the different genomic elements with respect to protecting genes from the silencing machinery and their molecular mechanisms remain unclear. Here, we present the results of a mutagenesis screen conceived to identify features involved in the protection of endogenes against becoming a template for the production of sRNAs. Interestingly, all of the recovered mutants had alterations in genes with proposed function in transcription termination, suggesting a central role of terminators in this process. Indeed, using a GFP reporter system, we show that, among different genetic elements tested, the terminator sequence had the greatest effect on transgene-derived sRNA accumulation and that a well-defined poly(A) site might be especially important. Finally, we describe an unexpected mechanism, where transgenes containing certain intron/terminator combinations lead to an increase in the production of sRNAs, which appears to interfere with splicing.


Asunto(s)
Interferencia de ARN , Regiones Terminadoras Genéticas , Transgenes , Arabidopsis/genética , Mutagénesis , ARN Interferente Pequeño , Nicotiana/genética , Transcripción Genética
13.
Plant Biotechnol J ; 18(9): 1925-1932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32012433

RESUMEN

The cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H. armigera, field-evolved resistance has occurred in multiple species. To manage resistant populations, new protection strategies must be continuously developed. Trans-kingdom RNA interference (TK-RNAi) is a promising method for controlling herbivorous pests. TK-RNAi is based on delivering dsRNA or hairpin RNA containing essential insect gene sequences to the feeding insect. The ingested molecules are processed by the insect's RNAi machinery and guide it to silence the target genes. Recently, TK-RNAi delivery has been enhanced by expressing the ds- or hpRNAs in the chloroplast. This compartmentalizes the duplexed RNA away from the plant's RNAi machinery, ensuring that it is delivered in an unprocessed form to the insect. Here, we report another alternative approach for delivering precursor anti-insect RNA in plants. Insect pre-microRNA (pre-miR) transcripts were modified to contain artificial microRNAs (amiRs), targeting insect genes, and expressed in transgenic Nicotiana benthamiana plants. These modified pre-miRs remained largely unprocessed in the plants, and H. armigera feeding on leaves from these plants had increased mortality, developmental abnormalities and delayed growth rates. This shows that plant-expressed insect pre-amiRs (plin-amiRs) are a new strategy of protecting plants against herbivorous insects.


Asunto(s)
Bacillus thuringiensis , MicroARNs , Mariposas Nocturnas , Animales , Insectos , MicroARNs/genética , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
14.
PLoS One ; 15(1): e0227994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978124

RESUMEN

Introducing a new trait into a crop through conventional breeding commonly takes decades, but recently developed genome sequence modification technology has the potential to accelerate this process. One of these new breeding technologies relies on an RNA-directed DNA nuclease (CRISPR/Cas9) to cut the genomic DNA, in vivo, to facilitate the deletion or insertion of sequences. This sequence specific targeting is determined by guide RNAs (gRNAs). However, choosing an optimum gRNA sequence has its challenges. Almost all current gRNA design tools for use in plants are based on data from experiments in animals, although many allow the use of plant genomes to identify potential off-target sites. Here, we examine the predictive uniformity and performance of eight different online gRNA-site tools. Unfortunately, there was little consensus among the rankings by the different algorithms, nor a statistically significant correlation between rankings and in vivo effectiveness. This suggests that important factors affecting gRNA performance and/or target site accessibility, in plants, are yet to be elucidated and incorporated into gRNA-site prediction tools.


Asunto(s)
Algoritmos , Edición Génica , Genoma de Planta , Plantas/genética , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Nicotiana/genética , Transgenes
15.
Front Plant Sci ; 10: 312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930927

RESUMEN

Agrobacterium tumefaciens has been foundational in the development of transgenic plants for both agricultural biotechnology and plant molecular research. However, the transformation efficiency and level of transgene expression obtained for any given construct can be highly variable. These inefficiencies often require screening of many lines to find one with consistent and heritable transgene expression. Transcriptional gene silencing is known to affect transgene expression, and is associated with DNA methylation, especially of cytosines in symmetric CG and CHG contexts. While the specificity, heritability and silencing-associated effects of DNA methylation of transgene sequences have been analyzed in many stably transformed plants, the methylation status of transgene sequences in the T-DNA during the transformation process has not been well-studied. Here we used agro-infiltration of the eGFP reporter gene in Nicotiana benthamiana leaves driven by either an AtEF1α-A4 or a CaMV-35S promoter to study early T-DNA methylation patterns of these promoter sequences. The T-DNA was examined by amplicon sequencing following sodium bisulfite treatment using three different sequencing platforms: Sanger sequencing, Ion Torrent PGM, and the Illumina MiSeq. Rapid DNA methylation was detectable in each promoter region just 2-3 days post-infiltration and the levels continued to rapidly accumulate over the first week, then steadily up to 21 days later. Cytosines in an asymmetric context (CHH) were the most heavily and rapidly methylated. This suggests that early T-DNA methylation may be important in determining the epigenetic and transcriptional fate of integrated transgenes. The Illumina MiSeq platform was the most sensitive and robust way of detecting and following the methylation profiles of the T-DNA promoters. The utility of the methods was then used to show a subtle but significant difference in promoter methylation during intron-mediated enhancement. In addition, the method was able to detect an increase in promoter methylation when the eGFP reporter gene was targeted by siRNAs generated by co-infiltration of a hairpin RNAi construct.

16.
Annu Rev Phytopathol ; 56: 405-426, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149789

RESUMEN

A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Virus de Plantas/fisiología , Genes de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Plantas Modificadas Genéticamente/virología , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/virología
17.
Sci Rep ; 8(1): 9426, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930292

RESUMEN

RNA silencing is a powerful tool deployed by plants against viral infection and abnormal gene expression. Plant viruses have evolved a suite of silencing suppressors for counter-defense, which are also widely used to boost transcript and protein accumulation in transient assays. However, only wild type silencing suppressor proteins have been reported to date. Here we demonstrate that P0 of Potato leafroll virus (PLRV), PLP0, can be split into two proteins that only show silencing suppression activity upon co-expression. We cloned each of these proteins in two different constructs and transiently co-infiltrated them in N. benthamiana leaves. We expressed a fluorescent protein from one of the vectors and observed that cells expressing both halves of PLP0 suppressed gene silencing. Further, we showed that Q system of Neurospora crassa, based on co-expression of a transcription activator and inhibitor, is functional in agroinfiltrated leaves of N. benthamiana. Q system combined with the split PLP0 system showed very tight co-expression of Q system's transcriptional activator and inhibitor. Altogether, our experiments demonstrate a functioning conditional silencing suppressor system and its potential as a powerful tool for transient expression in N. benthamiana leaves, as well as the application of the Q system in plants.


Asunto(s)
Silenciador del Gen , Nicotiana/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luteoviridae/genética , Neurospora crassa/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
Pest Manag Sci ; 74(8): 1751-1758, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29377554

RESUMEN

RNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double-stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans-kingdom RNAi (TK-RNAi). Since this pioneering work, there have been many further examples of successful TK-RNAi, but also reports of failed attempts and unrepeatable experiments. Recently, three laboratories have shown that producing dsRNA in a plant's chloroplast, rather than in its cellular cytoplasm, is a very effective way of delivering TK-RNAi. Our review examines this potentially game-changing approach and compares it with other transgenic insect-proofing schemes. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cloroplastos/fisiología , Genes de Insecto/genética , Control de Insectos/métodos , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , ARN Bicatenario/genética , Animales
19.
Front Plant Sci ; 8: 1669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021799

RESUMEN

Quantitative proteomics strategies - which are playing important roles in the expanding field of plant molecular systems biology - are traditionally designated as either hypothesis driven or non-hypothesis driven. Many of these strategies aim to select individual peptide ions for tandem mass spectrometry (MS/MS), and to do this mixed hypothesis driven and non-hypothesis driven approaches are theoretically simple to implement. In-depth investigations into the efficacies of such approaches have, however, yet to be described. In this study, using combined samples of unlabeled and metabolically 15N-labeled Arabidopsis thaliana proteins, we investigate the mixed use of targeted data acquisition (TDA) and data dependent acquisition (DDA) - referred to as TDA/DDA - to facilitate both hypothesis driven and non-hypothesis driven quantitative data collection in individual LC-MS/MS experiments. To investigate TDA/DDA for hypothesis driven data collection, 7 miRNA target proteins of differing size and abundance were targeted using inclusion lists comprised of 1558 m/z values, using 3 different TDA/DDA experimental designs. In samples in which targeted peptide ions were of particularly low abundance (i.e., predominantly only marginally above mass analyser detection limits), TDA/DDA produced statistically significant increases in the number of targeted peptides identified (230 ± 8 versus 80 ± 3 for DDA; p = 1.1 × 10-3) and quantified (35 ± 3 versus 21 ± 2 for DDA; p = 0.038) per experiment relative to the use of DDA only. These expected improvements in hypothesis driven data collection were observed alongside unexpected improvements in non-hypothesis driven data collection. Untargeted peptide ions with m/z values matching those in inclusion lists were repeatedly identified and quantified across technical replicate TDA/DDA experiments, resulting in significant increases in the percentages of proteins repeatedly quantified in TDA/DDA experiments only relative to DDA experiments only (33.0 ± 2.6% versus 8.0 ± 2.7%, respectively; p = 0.011). These results were observed together with uncompromised broad-scale MS/MS data collection in TDA/DDA experiments relative to DDA experiments. Using our observations we provide guidelines for TDA/DDA method design for quantitative plant proteomics studies, and suggest that TDA/DDA is a broadly underutilized proteomics data acquisition strategy.

20.
Viruses ; 9(10)2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994713

RESUMEN

The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.


Asunto(s)
Luteovirus/metabolismo , Proteínas de Movimiento Viral en Plantas/metabolismo , Interferencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , Luteoviridae/química , Luteoviridae/metabolismo , Luteovirus/química , Luteovirus/genética , Luteovirus/patogenicidad , Floema/virología , Filogenia , Enfermedades de las Plantas/virología , Proteínas de Movimiento Viral en Plantas/genética , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...