Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Res Sq ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585775

RESUMEN

In 1957 Abbott and Ballentine described a highly toxic activity from a dinoflagellate isolated from the English Channel. in 1949 by Mary Park. From a culture maintained at Plymouth Laboratory since 1950, we have been able to isolate two toxic molecules (Abbotoxin and 59-E-Chloro-Abbotoxin), determine the planar structures by analysis of HRMS and 1D and 2D NMR spectra and found them to be karlotoxin (KmTx) congeners. Both toxins kill larval zebrafish with symptoms identical to that described by Abbot and Ballantine for gobies (Gobius virescens). Using surface plasma resonance the sterol binding specificity of karlotoxins is shown to require desmethyl sterols. Our results with black lipid membranes indicate that karlotoxin forms large-conductance channels in the lipid membrane, which are characterized by large ionic conductance, poor ionic selectivity, and a complex gating behavior that exhibits strong voltage dependence and multiple gating patterns. In addition, we show that KmTx 2 pore formation is a highly targeted mechanism involving sterol-specificity. This is the first report of the functional properties of the membrane pores formed by karlotoxins and are consistent with the intial observations of Abbott and Ballentine from 1957.

2.
Nature ; 606(7912): 113-119, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585233

RESUMEN

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Asunto(s)
Avena , Grano Comestible , Genoma de Planta , Avena/genética , Diploidia , Grano Comestible/genética , Genoma de Planta/genética , Mosaicismo , Fitomejoramiento , Tetraploidía
3.
Database (Oxford) ; 20222022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35616118

RESUMEN

As one of the US Department of Agriculture-Agricultural Research Service flagship databases, GrainGenes (https://wheat.pw.usda.gov) serves the data and community needs of globally distributed small grains researchers for the genetic improvement of the Triticeae family and Avena species that include wheat, barley, rye and oat. GrainGenes accomplishes its mission by continually enriching its cross-linked data content following the findable, accessible, interoperable and reusable principles, enhancing and maintaining an intuitive web interface, creating tools to enable easy data access and establishing data connections within and between GrainGenes and other biological databases to facilitate knowledge discovery. GrainGenes operates within the biological database community, collaborates with curators and genome sequencing groups and contributes to the AgBioData Consortium and the International Wheat Initiative through the Wheat Information System (WheatIS). Interactive and linked content is paramount for successful biological databases and GrainGenes now has 2917 manually curated gene records, including 289 genes and 254 alleles from the Wheat Gene Catalogue (WGC). There are >4.8 million gene models in 51 genome browser assemblies, 6273 quantitative trait loci and >1.4 million genetic loci on 4756 genetic and physical maps contained within 443 mapping sets, complete with standardized metadata. Most notably, 50 new genome browsers that include outputs from the Wheat and Barley PanGenome projects have been created. We provide an example of an expression quantitative trait loci track on the International Wheat Genome Sequencing Consortium Chinese Spring wheat browser to demonstrate how genome browser tracks can be adapted for different data types. To help users benefit more from its data, GrainGenes created four tutorials available on YouTube. GrainGenes is executing its vision of service by continuously responding to the needs of the global small grains community by creating a centralized, long-term, interconnected data repository. Database URL:https://wheat.pw.usda.gov.


Asunto(s)
Genoma de Planta , Hordeum , Avena/genética , Mapeo Cromosómico , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica , Hordeum/genética , Sitios de Carácter Cuantitativo , Triticum/genética
4.
J Nat Prod ; 85(5): 1436-1441, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473311

RESUMEN

Two new lactone lipids, scoriosin (1) and its methyl ester (2), with a rare furylidene ring joined to a tetrahydrofurandione ring, were isolated from Scorias spongiosa, commonly referred to as sooty mold. The planar structure of these compounds was assigned by 1D and 2D NMR. The conformational analysis of these molecules was undertaken to evaluate the relative and absolute configuration through GIAO NMR chemical shift analysis and ECD calculation. In addition to the potent antimicrobial activities, compound 2 strongly potentiated the activity of amphotericin B against Cryptococcus neoformans, suggesting the potential utility of this compound in combination therapies for treating cryptococcal infections.


Asunto(s)
Antiinfecciosos , Cryptococcus neoformans , Antifúngicos/farmacología , Ascomicetos , Lactonas/farmacología , Lípidos , Estructura Molecular
5.
Theor Appl Genet ; 134(11): 3743-3757, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34345971

RESUMEN

KEY MESSAGE: Moisture content during nixtamalization can be accurately predicted from NIR spectroscopy when coupled with a support vector machine (SVM) model, is strongly modulated by the environment, and has a complex genetic architecture. Lack of high-throughput phenotyping systems for determining moisture content during the maize nixtamalization cooking process has led to difficulty in breeding for this trait. This study provides a high-throughput, quantitative measure of kernel moisture content during nixtamalization based on NIR scanning of uncooked maize kernels. Machine learning was utilized to develop models based on the combination of NIR spectra and moisture content determined from a scaled-down benchtop cook method. A linear support vector machine (SVM) model with a Spearman's rank correlation coefficient of 0.852 between wet laboratory and predicted values was developed from 100 diverse temperate genotypes grown in replicate across two environments. This model was applied to NIR spectra data from 501 diverse temperate genotypes grown in replicate in five environments. Analysis of variance revealed environment explained the highest percent of the variation (51.5%), followed by genotype (15.6%) and genotype-by-environment interaction (11.2%). A genome-wide association study identified 26 significant loci across five environments that explained between 5.04% and 16.01% (average = 10.41%). However, genome-wide markers explained 10.54% to 45.99% (average = 31.68%) of the variation, indicating the genetic architecture of this trait is likely complex and controlled by many loci of small effect. This study provides a high-throughput method to evaluate moisture content during nixtamalization that is feasible at the scale of a breeding program and provides important information about the factors contributing to variation of this trait for breeders and food companies to make future strategies to improve this important processing trait.


Asunto(s)
Culinaria/métodos , Aprendizaje Automático , Espectroscopía Infrarroja Corta , Agua/análisis , Estudios de Asociación Genética , Genotipo , Zea mays/genética
6.
Plant Genome ; 14(3): e20115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34197039

RESUMEN

Maize (Zea mays L.) is a multi-purpose row crop grown worldwide, which, over time, has often been bred for increased yield at the detriment of lower composition grain quality. Some knowledge of the genetic factors that affect quality traits has been discovered through the study of classical maize mutants; however, much of the underlying genetic control of these traits and the interaction between these traits remains unknown. To better understand variation that exists for grain compositional traits in maize, we evaluated 501 diverse temperate maize inbred lines in five unique environments and predicted 16 compositional traits (e.g., carbohydrates, protein, and starch) based on the output of near-infrared (NIR) spectroscopy. Phenotypic analysis found substantial variation for compositional traits and the majority of variation was explained by genetic and environmental factors. Correlations and trade-offs among traits in different maize types (e.g., dent, sweetcorn, and popcorn) were explored, and significant differences and meaningful correlations were detected. In total, 22.9-71.0% of the phenotypic variation across these traits could be explained using 2,386,666 single nucleotide polymorphism (SNP) markers generated from whole-genome resequencing data. A genome-wide association study (GWAS) was conducted using these same markers and found 72 statistically significant SNPs for 11 compositional traits. This study provides valuable insights in the phenotypic variation and genetic control underlying compositional traits that can be used in breeding programs for improving maize grain quality.


Asunto(s)
Semillas , Zea mays , Estudios de Asociación Genética , Fenotipo , Fitomejoramiento , Semillas/química , Almidón/química , Zea mays/química , Zea mays/genética
13.
Plant J ; 89(4): 706-717, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28188666

RESUMEN

Plants respond to abiotic stress through a variety of physiological, biochemical, and transcriptional mechanisms. Many genes exhibit altered levels of expression in response to abiotic stress, which requires concerted action of both cis- and trans-regulatory features. In order to study the variability in transcriptome response to abiotic stress, RNA sequencing was performed using 14-day-old maize seedlings of inbreds B73, Mo17, Oh43, PH207 and B37 under control, cold and heat conditions. Large numbers of genes that responded differentially to stress between parental inbred lines were identified. RNA sequencing was also performed on similar tissues of the F1 hybrids produced by crossing B73 and each of the three other inbred lines. By evaluating allele-specific transcript abundance in the F1 hybrids, we were able to measure the abundance of cis- and trans-regulatory variation between genotypes for both steady-state and stress-responsive expression differences. Although examples of trans-regulatory variation were observed, cis-regulatory variation was more common for both steady-state and stress-responsive expression differences. The genes with cis-allelic variation for response to cold or heat stress provided an opportunity to study the basis for regulatory diversity.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Plantones/genética , Zea mays/genética , Frío , Regulación de la Expresión Génica de las Plantas/genética , Calor , ARN de Planta/genética , Plantones/fisiología , Análisis de Secuencia de ARN , Zea mays/fisiología
14.
Glob Chang Biol ; 23(3): 1075-1084, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27558698

RESUMEN

Although observations suggest the potential for phenotypic plasticity to allow adaptive responses to climate change, few experiments have assessed that potential. Modeling suggests that Sceloporus tristichus lizards will need increased nest depth, shade cover, or embryonic thermal tolerance to avoid reproductive failure resulting from climate change. To test for such plasticity, we experimentally examined how maternal temperatures affect nesting behavior and embryonic thermal sensitivity. The temperature regime that females experienced while gravid did not affect nesting behavior, but warmer temperatures at the time of nesting reduced nest depth. Additionally, embryos from heat-stressed mothers displayed increased sensitivity to high-temperature exposure. Simulations suggest that critically low temperatures, rather than high temperatures, historically limit development of our study population. Thus, the plasticity needed to buffer this population has not been under selection. Plasticity will likely fail to compensate for ongoing climate change when such change results in novel stressors.


Asunto(s)
Cambio Climático , Lagartos/fisiología , Comportamiento de Nidificación , Adaptación Fisiológica , Animales , Clima , Femenino , Temperatura
15.
Angew Chem Int Ed Engl ; 54(52): 15705-10, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26568046

RESUMEN

After publication of karlotoxin 2 (KmTx2; 1), the harmful algal bloom dinoflagellate Karlodinium sp. was collected and scrutinized to identify additional biologically active complex polyketides. The structure of 1 was validated and revised at C49 using computational NMR tools including J-based configurational analysis and chemical-shift calculations. The characterization of two new compounds [KmTx8 (2) and KmTx9 (3)] was achieved through overlaid 2D HSQC NMR techniques, while the relative configurations were determined by comparison to 1 and computational chemical-shift calculations. The detailed evaluation of 2 using the NCI-60 cell lines, NMR binding studies, and an assessment of the literature supports a mode of action (MoA) for targeting cancer-cell membranes, especially of cytostatic tumors. This MoA is uniquely different from that of current agents employed in the control of cancers for which 2 shows sensitivity.


Asunto(s)
Piranos/química , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Policétidos , Piranos/toxicidad , Estereoisomerismo
17.
Biochim Biophys Acta ; 1850(9): 1849-54, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25964068

RESUMEN

BACKGROUND: Kahalalide F (KF) and its isomer iso-kahalalide F (isoKF), both of which can be isolated from the mollusk Elysia rufescens and its diet alga Bryopsis pennata, are potent cytotoxic agents that have advanced through five clinical trials. Due to a short half-life, narrow spectrum of activity, and a modest response in patients, further efforts to modify the molecule are required to address its limitations. In addition, due to the high cost in producing KF analogues using solid phase peptide synthesis (SPPS), a degradation and reconstruction approach was employed using natural KF from a seasonal algal bloom to generate KF analogues. METHODS: N-protected KF was carefully hydrolyzed at the amide linkage between l-Thr12 and d-Val13 using dilute HCl. The synthesis of the C-terminal fragment began with the formation of hexanoic succinimide ester, followed by a reaction with dipeptides. The final coupling reaction was performed between the semisynthesized Fmoc-KF hydrolysis product and the C-terminal fragment, followed by the deprotection of the Fmoc group. RESULTS: Six KF analogues with an addition of an amino acid residue on the N-terminal chain, d-Val14-isoKF (2), Val13-Val14-isoKF (3), d-Leu14-isoKF (4), d-Pro14-isoKF (5), d-Phe14-isoKF (6), and 3,4-2F-d-Phe14-isoKF (7) were prepared using semisynthesis at the exposed N-terminal chain. CONCLUSIONS: The overall yield of the medication was 45%. This approach is economical, efficient and amendable to large-scale production while eliminated a nuisance algal bloom. GENERAL SIGNIFICANCE: B. pennata blooms are capable of producing KF in good yields. The semisynthesis from the natural product produced N-terminal modifications for the construction of inexpensive semisynthetic KF libraries.


Asunto(s)
Chlorophyta/metabolismo , Depsipéptidos/biosíntesis , Eutrofización , Análisis Costo-Beneficio , Depsipéptidos/química , Depsipéptidos/farmacología , Hidrólisis , Relación Estructura-Actividad
18.
PLoS Genet ; 11(1): e1004915, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569788

RESUMEN

Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Transcripción Genética , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Plantones/genética
19.
Int J Ment Health Nurs ; 24(3): 193-202, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25438620

RESUMEN

Handover, or the communication of patient information between clinicians, is a fundamental component of health care. Psychiatric settings are dynamic environments relying on timely and accurate communication to plan care and manage risk. Crisis assessment and treatment teams are the primary interface between community and mental health services in many Australian and international health services, facilitating access to assessment, treatment, and admission to hospital. No previous research has investigated the handover between crisis assessment and treatment teams and inpatient psychiatric units, despite the importance of handover to care planning. The aim of the present study was to identify the nature and types of information transferred during these handovers, and to explore how these guides initial care planning. An observational, exploratory study design was used. A 20-item handover observation tool was used to observe 19 occasions of handover. A prospective audit was undertaken on clinical documentation arising from the admission. Clinical information, including psychiatric history and mental state, were handed over consistently; however, information about consumer preferences was reported less consistently. The present study identified a lack of attention to consumer preferences at handover, despite the current focus on recovery-oriented models for mental health care, and the centrality of respecting consumer preferences within the recovery paradigm.


Asunto(s)
Intervención en la Crisis (Psiquiatría)/organización & administración , Comunicación Interdisciplinaria , Registros Médicos Orientados a Problemas , Trastornos Mentales/enfermería , Registros de Enfermería , Grupo de Atención al Paciente/organización & administración , Pase de Guardia/organización & administración , Servicio de Psiquiatría en Hospital/organización & administración , Adolescente , Adulto , Femenino , Humanos , Masculino , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Persona de Mediana Edad , Auditoría de Enfermería , Planificación de Atención al Paciente , Prioridad del Paciente , Estudios Prospectivos , Centros de Atención Terciaria , Victoria , Adulto Joven
20.
Front Mar Sci ; 12014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27785452

RESUMEN

Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp.) that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899) (Class Demospongiae, Order Haplosclerida, Family Petrosiidae). These findings suggest that a general strategy of analysis of the macroorganism's microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA