Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Nat Commun ; 14(1): 6604, 2023 10 23.
Article En | MEDLINE | ID: mdl-37872151

Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine.


Hydrogels , Tryptophan , Humans , Tryptophan/chemistry , Hydrogels/chemistry , Peptides/chemistry , Biotechnology , Organoids
2.
Front Mol Biosci ; 10: 1148501, 2023.
Article En | MEDLINE | ID: mdl-37325471

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.

3.
J Pers Med ; 13(5)2023 May 21.
Article En | MEDLINE | ID: mdl-37241034

Primary nasal epithelial cells and culture models are used as important diagnostic, research and drug development tools for several airway diseases. Various instruments have been used for the collection of human nasal epithelial (HNE) cells but no global consensus yet exists regarding the optimal tool. This study compares the efficiency of two cytology brushes (Olympus (2 mm diameter) and Endoscan (8 mm diameter)) in collecting HNE cells. The study involved two phases, with phase one comparing the yield, morphology and cilia beat frequency (CBF) of cells collected from paediatric participants using each of the two brushes. Phase two compared nasal brushing under general anaesthetic and in the awake state, across a wide age range, via the retrospective audit of the use of the Endoscan brush in 145 participants. Results indicated no significant difference in CBF measurements between the two brushes, suggesting that the choice of brush does not compromise diagnostic accuracy. However, the Endoscan brush collected significantly more total and live cells than the Olympus brush, making it a more efficient option. Importantly, the Endoscan brush is more cost-effective, with a notable price difference between the two brushes.

4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37047450

Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.


Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Chromatography, Liquid , Cells, Cultured , Tandem Mass Spectrometry , Epithelium/metabolism , Cystic Fibrosis/genetics , Epithelial Cells/metabolism , Hypoxia/metabolism
5.
Proc Natl Acad Sci U S A ; 120(16): e2217557120, 2023 04 18.
Article En | MEDLINE | ID: mdl-37040415

Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.


Endothelial Cells , Hypoxia , Humans , Capsules , Endothelial Cells/metabolism , Biocompatible Materials , Hydrogels , Oxygen/metabolism
6.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Article En | MEDLINE | ID: mdl-36927149

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Dependovirus , Liver , Humans , Dependovirus/genetics , Liver/metabolism , Genetic Therapy/methods , Hepatocytes/metabolism , Capsid Proteins/metabolism , Tropism , Genetic Vectors/genetics
7.
Front Pediatr ; 10: 1062766, 2022.
Article En | MEDLINE | ID: mdl-36467478

Cystic Fibrosis (CF) results from over 400 different disease-causing mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. These CFTR mutations lead to numerous defects in CFTR protein function. A novel class of targeted therapies (CFTR modulators) have been developed that can restore defects in CFTR folding and gating. This study aimed to characterize the functional and structural defects of S945L-CFTR and interrogate the efficacy of modulators with two modes of action: gating potentiator [ivacaftor (IVA)] and folding corrector [tezacaftor (TEZ)]. The response to these modulators in vitro in airway differentiated cell models created from a participant with S945L/G542X-CFTR was correlated with in vivo clinical outcomes of that participant at least 12 months pre and post modulator therapy. In this participants' airway cell models, CFTR-mediated chloride transport was assessed via ion transport electrophysiology. Monotherapy with IVA or TEZ increased CFTR activity, albeit not reaching statistical significance. Combination therapy with TEZ/IVA significantly (p = 0.02) increased CFTR activity 1.62-fold above baseline. Assessment of CFTR expression and maturation via western blot validated the presence of mature, fully glycosylated CFTR, which increased 4.1-fold in TEZ/IVA-treated cells. The in vitro S945L-CFTR response to modulator correlated with an improvement in in vivo lung function (ppFEV1) from 77.19 in the 12 months pre TEZ/IVA to 80.79 in the 12 months post TEZ/IVA. The slope of decline in ppFEV1 significantly (p = 0.02) changed in the 24 months post TEZ/IVA, becoming positive. Furthermore, there was a significant improvement in clinical parameters and a fall in sweat chloride from 68 to 28 mmol/L. The mechanism of dysfunction of S945L-CFTR was elucidated by in silico molecular dynamics (MD) simulations. S945L-CFTR caused misfolding of transmembrane helix 8 and disruption of the R domain, a CFTR domain critical to channel gating. This study showed in vitro and in silico that S945L causes both folding and gating defects in CFTR and demonstrated in vitro and in vivo that TEZ/IVA is an efficacious modulator combination to address these defects. As such, we support the utility of patient-derived cell models and MD simulations in predicting and understanding the effect of modulators on CFTR function on an individualized basis.

8.
J Pers Med ; 12(10)2022 Oct 07.
Article En | MEDLINE | ID: mdl-36294807

Infection control and aggressive antibiotic therapy play an important role in the management of airway infections in individuals with cystic fibrosis (CF). The responses of airway epithelial cells to pathogens are likely to contribute to the pathobiology of CF lung disease. Primary airway epithelial cells obtained from individuals with CF, cultured and differentiated at air-liquid interface (ALI), effectively mimic the structure and function of the in vivo airway epithelium. With the recent respiratory viral pandemics, ALI cultures were extensively used to model respiratory infections in vitro to facilitate physiologically relevant respiratory research. Immunofluorescence staining and imaging were used as an effective tool to provide a fundamental understanding of host-pathogen interactions and for exploring the therapeutic potential of novel or repurposed drugs. Therefore, we described an optimized quantitative fluorescence microscopy assay for the wholemount staining and imaging of epithelial cell markers to identify distinct cell populations and pathogen-specific targets in ALI cultures of human airway epithelial cells grown on permeable support insert membranes. We present a detailed methodology using a graphical user interface (GUI) package to quantify the detected signals on a tiled whole membrane. Our method provided an imaging strategy of the entire membrane, overcoming the common issue of undersampling and enabling unbiased quantitative analysis.

9.
Am J Respir Cell Mol Biol ; 67(1): 99-111, 2022 07.
Article En | MEDLINE | ID: mdl-35471184

A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.


Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/pharmacology , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Molecular Dynamics Simulation , Mutation , Organoids/metabolism
10.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article En | MEDLINE | ID: mdl-35055020

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
11.
iScience ; 25(1): 103710, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35072004

Characterization of I37R, a mutation located in the lasso motif of the CFTR chloride channel, was conducted by theratyping several CFTR modulators from both potentiator and corrector classes. Intestinal current measurements in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids, and short circuit current measurements in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype demonstrated that the I37R-CFTR results in a residual function defect amenable to treatment with potentiators and type III, but not type I, correctors. Molecular dynamics of I37R using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavorable strengthening of the interactions between the lasso motif, the regulatory (R) domain, and the transmembrane domain 2 (TMD2). Structural and functional characterization of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to expand drug access to CF patients with ultra-rare genotypes.

12.
J Vis Exp ; (177)2021 11 10.
Article En | MEDLINE | ID: mdl-34842237

Measurements of cilia function (beat frequency, pattern) have been established as diagnostic tools for respiratory diseases such as primary ciliary dyskinesia. However, the wider application of these techniques is limited by the extreme susceptibility of ciliary function to changes in environmental factors e.g., temperature, humidity, and pH. In the airway of patients with Cystic Fibrosis (CF), mucus accumulation impedes cilia beating. Cilia function has been investigated in primary airway cell models as an indicator of CF Transmembrane conductance Regulator (CFTR) channel activity. However, considerable patient-to-patient variability in cilia beating frequency has been found in response to CFTR-modulating drugs, even for patients with the same CFTR mutations. Furthermore, the impact of dysfunctional CFTR-regulated chloride secretion on ciliary function is poorly understood. There is currently no comprehensive protocol demonstrating sample preparation of in vitro airway models, image acquisition, and analysis of Cilia Beat Frequency (CBF). Standardized culture conditions and image acquisition performed in an environmentally controlled condition would enable consistent, reproducible quantification of CBF between individuals and in response to CFTR-modulating drugs. This protocol describes the quantification of CBF in three different airway epithelial cell model systems: 1) native epithelial sheets, 2) air-liquid interface models imaged on permeable support inserts, and 3) extracellular matrix-embedded three-dimensional organoids. The latter two replicate in vivo lung physiology, with beating cilia and production of mucus. The ciliary function is captured using a high-speed video camera in an environment-controlled chamber. Custom-built scripts are used for the analysis of CBF. Translation of CBF measurements to the clinic is envisioned to be an important clinical tool for predicting response to CFTR-modulating drugs on a per-patient basis.


Cilia , Cystic Fibrosis , Cell Differentiation , Cells, Cultured , Cilia/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/physiology , Humans , Ion Transport , Nasal Mucosa/metabolism
13.
Genome Med ; 13(1): 133, 2021 08 19.
Article En | MEDLINE | ID: mdl-34412659

BACKGROUND: The enrichment of Gram-negative bacteria of oral origin in the esophageal microbiome has been associated with the development of metaplasia. However, to date, no study has comprehensively assessed the relationships between the esophageal microbiome and the host. METHODS: Here, we examine the esophageal microenvironment in gastro-esophageal reflux disease and metaplasia using multi-omics strategies targeting the microbiome and host transcriptome, followed by targeted culture, comparative genomics, and host-microbial interaction studies of bacterial signatures of interest. RESULTS: Profiling of the host transcriptome from esophageal mucosal biopsies revealed profound changes during metaplasia. Importantly, five biomarkers showed consistent longitudinal changes with disease progression from reflux disease to metaplasia. We showed for the first time that the esophageal microbiome is distinct from the salivary microbiome and the enrichment of Campylobacter species as a consistent signature in disease across two independent cohorts. Shape fitting and matrix correlation identified associations between the microbiome and host transcriptome profiles, with a novel co-exclusion relationship found between Campylobacter and napsin B aspartic peptidase. Targeted culture of Campylobacter species from the same cohort revealed a subset of isolates to have a higher capacity to survive within primary human macrophages. Comparative genomic analyses showed these isolates could be differentiated by specific genomic features, one of which was validated to be associated with intracellular fitness. Screening for these Campylobacter strain-specific signatures in shotgun metagenomics data from another cohort showed an increase in prevalence with disease progression. Comparative transcriptomic analyses of primary esophageal epithelial cells exposed to the Campylobacter isolates revealed expression changes within those infected with strains with high intracellular fitness that could explain the increased likelihood of disease progression. CONCLUSIONS: We provide a comprehensive assessment of the esophageal microenvironment, identifying bacterial strain-specific signatures with high relevance to progression of metaplasia.


Barrett Esophagus/etiology , Barrett Esophagus/metabolism , Biomarkers , Cellular Microenvironment , Disease Susceptibility , Esophagus/metabolism , Adult , Barrett Esophagus/pathology , Cellular Microenvironment/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Esophagus/microbiology , Esophagus/pathology , Female , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/etiology , Gene Expression Profiling , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/microbiology , Host-Pathogen Interactions/genetics , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Mast Cells/immunology , Mast Cells/metabolism , Metaplasia , Microbiota , Middle Aged , Models, Biological , RNA, Ribosomal, 16S
14.
Patterns (N Y) ; 2(9): 100325, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34278363

An effective monotherapy to target the complex and multifactorial pathology of SARS-CoV-2 infection poses a challenge to drug repositioning, which can be improved by combination therapy. We developed an online network pharmacology-based drug repositioning platform, COVID-CDR (http://vafaeelab.com/COVID19repositioning.html), that enables a visual and quantitative investigation of the interplay between the primary drug targets and the SARS-CoV-2-host interactome in the human protein-protein interaction network. COVID-CDR prioritizes drug combinations with potential to act synergistically through different, yet potentially complementary, pathways. It provides the options for understanding multi-evidence drug-pair similarity scores along with several other relevant information on individual drugs or drug pairs. Overall, COVID-CDR is a first-of-its-kind online platform that provides a systematic approach for pre-clinical in silico investigation of combination therapies for treating COVID-19 at the fingertips of the clinicians and researchers.

15.
Front Pharmacol ; 12: 639475, 2021.
Article En | MEDLINE | ID: mdl-33796025

Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients' lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body's defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy-which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient-is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.

16.
J Extracell Vesicles ; 10(3): e12053, 2021 01.
Article En | MEDLINE | ID: mdl-33532041

Cystic fibrosis is a genetic disorder that results in a multi-organ disease with progressive respiratory decline which leads to premature death. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene disrupts the capacity of the protein to function as a channel, transporting chloride ions and bicarbonate across epithelial cell membranes. Small molecule treatments targeted at potentiating or correcting CFTR have shown clinical benefits, but are only effective for a small percentage of individuals with specific CFTR mutations. To overcome this limitation, we engineered stromal-derived mesenchymal stem cells (MSC) and HEK293 cells to produce exosomes containing a novel CFTR Zinc Finger Protein fusion with transcriptional activation domains VP64, P65 and Rta to target the CFTR promoter (CFZF-VPR) and activate transcription. Treatment with CFZF-VPR results in robust activation of CFTR transcription in patient derived Human Bronchial Epithelial cells (HuBEC). We also find that CFZF-VPR can be packaged into MSC and HEK293 cell exosomes and delivered to HuBEC cells to potently activate CFTR expression. Connexin 43 appeared to be required for functional release of CFZF-VPR from exosomes. The observations presented here demonstrate that MSC derived exosomes can be used to deliver a packaged zinc finger activator to target cells and activate CFTR. The novel approach presented here offers a next-generation genetic therapy that may one day prove effective in treating patients afflicted with Cystic fibrosis.


Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Bicarbonates/metabolism , Cell Membrane/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Genetic Therapy/methods , HEK293 Cells , Humans , Ion Transport , Molecular Targeted Therapy/methods , Zinc Fingers
17.
ERJ Open Res ; 7(1)2021 Jan.
Article En | MEDLINE | ID: mdl-33532470

BACKGROUND: Patient-oriented research approaches that reflect the needs and priorities of those most affected by health research outcomes improves translation of research findings into practice. Targeted therapies for cystic fibrosis (CF) are now a viable treatment option for some eligible individuals despite the heterogeneous patient-specific therapeutic response. This has necessitated development of a clinical tool that predicts treatment response for individual patients. Patient-derived mini-organs (organoids) have been at the forefront of this development. However, little is known about their acceptability in CF patients and members of the public. METHODS: We used a cross-sectional observational design to conduct an online survey in people with CF, their carers and community comparisons. Acceptability was examined in five domains: 1) willingness to use organoids, 2) perceived advantages and disadvantages of organoids, 3) acceptable out-of-pocket costs, 4) turnaround time and 5) source of tissue. RESULTS: In total, 188 participants completed the questionnaire, including adults with CF and parents of children with CF (90 (48%)), and adults without CF and parents of children without CF (98 (52%)). Use of organoids to guide treatment decisions in CF was acceptable to 86 (95%) CF participants and 98 (100%) community participants. The most important advantage was that organoids may improve treatment selection, improving the patient's quality of life and life expectancy. The most important disadvantage was that the organoid recommended treatment might be unavailable or too expensive. CONCLUSIONS: These findings indicate acceptance of patient-derived organoids as a tool to predict treatment response by the majority of people surveyed. This may indicate successful future implementation into healthcare systems.

18.
J Cyst Fibros ; 20(2): 364-371, 2021 03.
Article En | MEDLINE | ID: mdl-33414087

BACKGROUND: Patient-derived airway cells differentiated at Air Liquid Interface (ALI) are valuable models for Cystic fibrosis (CF) precision therapy. Different culture expansion methods have been established to extend expansion capacity of airway basal cells, while retaining functional airway epithelium physiology. Considerable variation in response to CFTR modulators is observed in cultures even within the same CFTR genotype and despite the use of similar ALI culture techniques. We aimed to address culture expansion method impact on differentiation. METHODS: Nasal epithelial brushings from 14 individuals (CF=9; non-CF=5) were collected, then equally divided and expanded under conditional reprogramming culture (CRC) and feeder-serum-free "dual-SMAD inhibition" (SMADi) methods. Expanded cells from each culture were differentiated with proprietary PneumaCult™-ALI media. Morphology (Immunofluorescence), global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility, and ion transport) were compared in CRCALI and SMADiALI under basal and CFTR corrector treated (VX-809) conditions. RESULTS: No significant difference in the structural morphology or baseline global proteomics profile were observed. Barrier integrity and cilia motility were significantly different, despite no difference in cell junction morphology or cilia abundance. Epithelial Sodium Channels and Calcium-activated Chloride Channel activity did not differ but CFTR mediated chloride currents were significantly reduced in SMADiALI compare to their CRCALI counterparts. CONCLUSION: Alteration of cellular physiological function in vitro were more prominent than structural and differentiation potential in airway ALI. Since initial expansion culture conditions significantly influence CFTR activity, this could lead to false conclusions if data from different labs are compared against each other without specific reference ranges.


Cell Culture Techniques , Cellular Reprogramming Techniques , Cystic Fibrosis/pathology , Epithelial Cells/pathology , Nasal Mucosa/cytology , Cell Differentiation , Cells, Cultured , Chloride Channels/metabolism , Cilia/pathology , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , In Vitro Techniques , Proteomics
19.
Antioxidants (Basel) ; 9(12)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266084

Systemic glutathione deficiency, inflammation, and oxidative stress are hallmarks of cystic fibrosis (CF), an inherited disease that causes persistent lung infections and severe damage to the respiratory system and many of the body organs. Improvements to current antioxidant therapeutic strategies are needed. The dietary supplement, γ-glutamylcysteine (GGC), which is the immediate precursor to glutathione, rapidly boosts cellular glutathione levels following a single dose in healthy individuals. Efficacy of GGC against oxidative stress induced by Pseudomonas aeruginosa, which is a common and chronic pathogen infecting lungs of CF patients, remains unassessed. Primary mucocilliary differentiated airway (bronchial and/or nasal) epithelial cells were created from four individuals with CF. Airway oxidative stress and inflammation was induced by P. aeruginosa lipopolysaccharide (LPS). Parameters including global proteomics alterations, cell redox state (glutathione, oxidative stress), pro-inflammatory mediators (IL-8, IDO-1), and cellular health (membrane integrity, stress granule formation, cell metabolic viability) were assayed under six experimental conditions: (1) Mock, (2) LPS-challenged (3) therapeutic, (4) prophylactic (5) therapeutic and prophylactic and (6) GGC alone. Proteomic analysis identified perturbation of several pathways related to cellular respiration and stress responses upon LPS challenge. Most of these were resolved when cells were treated with GGC. While GGC did not resolve LPS-induced IL-8 and IDO-1 activity, it effectively attenuated LPS-induced oxidative stress and stress granule formation, while significantly increasing total intracellular glutathione levels, metabolic viability and improving epithelial cell barrier integrity. Both therapeutic and prophylactic treatments were successful. Together, these findings indicate that GGC has therapeutic potential for treatment and prevention of oxidative stress-related damage to airways in cystic fibrosis.

20.
Sci Rep ; 10(1): 17854, 2020 10 20.
Article En | MEDLINE | ID: mdl-33082398

Hibernation is a physiological state employed by many animals that are exposed to limited food and adverse winter conditions. Controlling tissue-specific and organism wide changes in metabolism and cellular function requires precise regulation of gene expression, including by microRNAs (miRNAs). Here we profile miRNA expression in the central bearded dragon (Pogona vitticeps) using small RNA sequencing of brain, heart, and skeletal muscle from individuals in late hibernation and four days post-arousal. A total of 1295 miRNAs were identified in the central bearded dragon genome; 664 of which were novel to central bearded dragon. We identified differentially expressed miRNAs (DEmiRs) in all tissues and correlated mRNA expression with known and predicted target mRNAs. Functional analysis of DEmiR targets revealed an enrichment of differentially expressed mRNA targets involved in metabolic processes. However, we failed to reveal biologically relevant tissue-specific processes subjected to miRNA-mediated regulation in heart and skeletal muscle. In brain, neuroprotective pathways were identified as potential targets regulated by miRNAs. Our data suggests that miRNAs are necessary for modulating the shift in cellular metabolism during hibernation and regulating neuroprotection in the brain. This study is the first of its kind in a hibernating reptile and provides key insight into this ephemeral phenotype.


Hibernation , Lizards/genetics , Lizards/physiology , MicroRNAs/metabolism , Animals , Australia , Down-Regulation , Gene Expression Profiling , Up-Regulation
...