Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
bioRxiv ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38854144

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalogue differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.

2.
Gastroenterology ; 166(5): 902-914, 2024 05.
Article En | MEDLINE | ID: mdl-38101549

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Hospitalization , Liver Diseases , Adult , Female , Humans , Male , Middle Aged , Calcium-Binding Proteins , Cysts/genetics , Cysts/diagnostic imaging , Cysts/pathology , Disease Progression , Europe , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Glucosidases/genetics , Hepatomegaly/genetics , Hepatomegaly/diagnostic imaging , Hospitalization/statistics & numerical data , Liver/pathology , Liver/diagnostic imaging , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/diagnostic imaging , Molecular Chaperones , Organ Size , Prognosis , Risk Assessment , Risk Factors , RNA-Binding Proteins , Severity of Illness Index , Sex Factors , United States/epidemiology
3.
Adv Kidney Dis Health ; 30(5): 429-439, 2023 Sep.
Article En | MEDLINE | ID: mdl-38097333

Autosomal dominant polycystic kidney disease (ADPKD) is the leading cause of inherited kidney disease with significant contributions to CKD and end-stage kidney disease. The underlying polycystin proteins (PC1 and PC2) have widespread tissue expression and complex functional roles making ADPKD a systemic disease. Vascular complications, particularly intracranial aneurysms (ICA) are the most feared due to their potential for devastating neurological complications and sudden death. Intracranial aneurysms occur in 8-12% of all patients with ADPKD, but the risk is intensified 4-5-fold in those with a positive family history. The basis for this genetic risk is not well understood and could conceivably be due to features of the germline mutation with a significant contribution of other genetic modifiers and/or environmental factors. Here we review what is known about the natural history and genetics of unruptured ICA in ADPKD including the prevalence and risk factors for aneurysm formation and subarachnoid hemorrhage. We discuss two alternative screening strategies and recommend a practical algorithm that targets those at highest risk for ICA with a positive family history for screening.


Intracranial Aneurysm , Polycystic Kidney, Autosomal Dominant , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/epidemiology , Polycystic Kidney, Autosomal Dominant/complications , Subarachnoid Hemorrhage/complications , Risk Factors , Prevalence
4.
Nat Commun ; 14(1): 6513, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845212

Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.


Pancreatic Cyst , Polycystic Kidney, Autosomal Recessive , Mice , Animals , Receptors, Cell Surface/metabolism , Kidney/metabolism , Polycystic Kidney, Autosomal Recessive/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Kidney Tubules/metabolism
5.
Physiol Genomics ; 55(11): 565-577, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37720991

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.


Cysts , Polycystic Kidney, Autosomal Dominant , Animals , Mice , Cysts/complications , Mice, Knockout , Polycystic Kidney, Autosomal Dominant/genetics , Transcriptome/genetics , TRPP Cation Channels/genetics
7.
Kidney Int Rep ; 8(3): 467-477, 2023 Mar.
Article En | MEDLINE | ID: mdl-36938071

Introduction: Dysregulated cellular metabolism contributes to autosomal dominant polycystic kidney disease (ADPKD) pathogenesis. The Trial of Administration of Metformin in Polycystic Kidney Disease (TAME-PKD) tested the effects of metformin treatment over 2 years in adult ADPKD patients with mild-moderate disease severity. Metformin was found to be safe and tolerable with an insignificant trend toward reduced estimated glomerular filtration rate (eGFR) decline compared to placebo. Here we tested whether targeted urinary metabolic biomarkers measured in TAME-PKD participants correlated with disease progression, severity, and metformin treatment in cross-sectional and longitudinal analyses. Methods: Concentrations of total protein, targeted metabolites (lactate, pyruvate, and succinate), and glycolytic enzymes (pyruvate kinase-M2, lactate dehydrogenase-A, and pyruvate dehydrogenase kinase-1) were measured and normalized by creatinine or osmolality in urine specimens and compared with height-adjusted total kidney volume (htTKV) and eGFR at the different study timepoints. Results: In cross-sectional analyses utilizing placebo group data, urinary succinate normalized by creatinine negatively correlated with ln (htTKV), whereas protein excretion strongly positively correlated with ln (htTKV), and negatively correlated with eGFR. Significant time-varying negative associations occurred with eGFR and the lactate/pyruvate ratio and with urine protein normalized by osmolality, indicating correlations of these biomarkers with disease progression. In secondary analyses, urinary pyruvate normalized by osmolality was preserved in metformin-treated participants but declined in placebo over the 2-year study period with a significant between-arm difference, suggesting time-dependent urinary pyruvate changes may serve as a discriminator for metformin treatment effects in this study population. Conclusion: Proteinuria with enhanced glycolytic and reduced oxidative metabolic markers generally correlated with disease severity and risk of progression in the TAME-PKD study population.

8.
BMC Nephrol ; 23(1): 334, 2022 10 18.
Article En | MEDLINE | ID: mdl-36258169

BACKGROUND: Tolvaptan was approved in the United States in 2018 for patients with autosomal dominant polycystic kidney disease (ADPKD) at risk of rapid progression as assessed in a 3-year phase 3 clinical trial (TEMPO 3:4). An extension study (TEMPO 4:4) showed continued delay in progression at 2 years, and a trial in patients with later-stage disease (REPRISE) provided confirmatory evidence of efficacy. Given the relatively shorter-term duration of the clinical trials, estimating the longer-term benefit associated with tolvaptan via extrapolation of the treatment effect is an important undertaking. METHODS: A model was developed to simulate a cohort of patients with ADPKD at risk of rapid progression and predict their long-term outcomes using an algorithm organized around the Mayo Risk Classification system, which has five subclasses (1A through 1E) based on estimated kidney growth rates. The model base-case population represents 1280 patients enrolled in TEMPO 3:4 beginning in chronic kidney disease (CKD) stages G1, G2, and G3 across Mayo subclasses 1C, 1D, and 1E. The algorithm was used to predict longer-term natural history health outcomes. The estimated treatment effect of tolvaptan from TEMPO 3:4 was applied to the natural history to predict the longer-term treatment benefit of tolvaptan. For the cohort, analyzed once reflecting natural history and once assuming treatment with tolvaptan, the model estimated lifetime progression through CKD stages, end-stage renal disease (ESRD), and death. RESULTS: When treated with tolvaptan, the model cohort was predicted to experience a 3.1-year delay of ESRD (95% confidence interval: 1.8 to 4.4), approximately a 23% improvement over the estimated 13.7 years for patients not receiving tolvaptan. Patients beginning tolvaptan treatment in CKD stages G1, G2, and G3 were predicted to experience estimated delays of ESRD, compared with patients not receiving tolvaptan, of 3.8 years (21% improvement), 3.0 years (24% improvement), and 2.1 years (28% improvement), respectively. CONCLUSIONS: The model estimated that patients treated with tolvaptan versus no treatment spent more time in earlier CKD stages and had later onset of ESRD. Findings highlight the potential long-term value of early intervention with tolvaptan in patients at risk of rapid ADPKD progression.


Kidney Failure, Chronic , Polycystic Kidney, Autosomal Dominant , Tolvaptan , Humans , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Disease Progression , Kidney Failure, Chronic/epidemiology , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Time Factors , Tolvaptan/therapeutic use , Clinical Trials, Phase III as Topic
9.
Nat Commun ; 13(1): 6497, 2022 10 30.
Article En | MEDLINE | ID: mdl-36310237

Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end stage renal disease characterized by progressive expansion of kidney cysts. To better understand the cell types and states driving ADPKD progression, we analyze eight ADPKD and five healthy human kidney samples, generating single cell multiomic atlas consisting of ~100,000 single nucleus transcriptomes and ~50,000 single nucleus epigenomes. Activation of proinflammatory, profibrotic signaling pathways are driven by proximal tubular cells with a failed repair transcriptomic signature, proinflammatory fibroblasts and collecting duct cells. We identify GPRC5A as a marker for cyst-lining collecting duct cells that exhibits increased transcription factor binding motif availability for NF-κB, TEAD, CREB and retinoic acid receptors. We identify and validate a distal enhancer regulating GPRC5A expression containing these motifs. This single cell multiomic analysis of human ADPKD reveals previously unrecognized cellular heterogeneity and provides a foundation to develop better diagnostic and therapeutic approaches.


Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Single-Cell Analysis , Kidney/metabolism , Kidney Tubules/metabolism , Epithelial Cells/metabolism , Cysts/metabolism , Receptors, G-Protein-Coupled/metabolism
10.
Kidney360 ; 3(8): 1350-1358, 2022 08 25.
Article En | MEDLINE | ID: mdl-36176661

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease worldwide. Over the past five years, the therapeutic pipeline for ADPKD has expanded, leading to a growing need for patient enrollment in clinical trials and improved understanding of patient-centered outcomes that can be used in trial design. To advance these goals, the Polycystic Kidney Disease Foundation (PKDF) established a national web-based ADPKD Registry. Methods: The ADPKD Registry is hosted on a secure, HIPAA-compliant, online platform (IQVIA, oc-meridian.com/pkdcure). Participants are consented through the online system and complete a series of modules. The Core Questionnaire includes patient-reported diagnosis, latest creatinine values, and comorbidities. Additional modules include surveys of family history, diet, quality of life, extrarenal manifestations, and attitudes surrounding research participation. Results: As of October 2021, 1563 ADPKD patients across the United States have registered and completed the Core Questionnaire. Participants have a median age of 44 years and are 72% women, 93% White, with 4% self-identifying as Hispanic/Latino and 2% as Black. All CKD stages are present, including post kidney transplant. To date, seven clinical studies have used the Registry as a recruitment tool. Additionally, quality-of-life burden scores revealed a correlation with disease stage as determined by kidney function. Conclusions: The Registry described here is the only one of its kind and is a valuable longitudinal research tool encompassing all stages of ADPKD. The registry will allow investigators to pursue a range of research questions related to the management of ADPKD, including definition of health-related quality of life (HRQoL) outcomes and recruitment for a variety of observational and therapeutic clinical protocols.


Polycystic Kidney, Autosomal Dominant , Adult , Creatinine/therapeutic use , Female , Humans , Male , Polycystic Kidney, Autosomal Dominant/diagnosis , Quality of Life , Registries , Surveys and Questionnaires , United States/epidemiology
11.
Am J Hum Genet ; 109(1): 136-156, 2022 01 06.
Article En | MEDLINE | ID: mdl-34890546

Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.


Alleles , Carrier Proteins , Genetic Predisposition to Disease , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Adult , Aged , Amino Acid Substitution , Biological Specimen Banks , Cilia/pathology , DNA Copy Number Variations , Female , Genetic Association Studies , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney Function Tests , Male , Middle Aged , Pedigree , Phenotype , Polycystic Kidney, Autosomal Dominant/diagnosis , Sequence Analysis, DNA , United Kingdom , Exome Sequencing
12.
FASEB J ; 35(10): e21865, 2021 10.
Article En | MEDLINE | ID: mdl-34486178

Autosomal dominant polycystic kidney disease is a common inherited renal disorder that results from mutations in either PKD1 or PKD2, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Downregulation or overexpression of PKD1 or PKD2 in mouse models results in renal cyst formation, suggesting that the quantity of PC1 and PC2 needs to be maintained within a tight functional window to prevent cystogenesis. Here we show that enhanced PC2 expression is a common feature of PKD1 mutant tissues, in part due to an increase in Pkd2 mRNA. However, our data also suggest that more effective protein folding contributes to the augmented levels of PC2. We demonstrate that the unfolded protein response is activated in Pkd1 knockout kidneys and in Pkd1 mutant cells and that this is coupled with increased levels of GRP94, an endoplasmic reticulum protein that is a member of the HSP90 family of chaperones. GRP94 was found to physically interact with PC2 and depletion or chemical inhibition of GRP94 led to a decrease in PC2, suggesting that GRP94 serves as its chaperone. Moreover, GRP94 is acetylated and binds to histone deacetylase 6 (HDAC6), a known deacetylase and activator of HSP90 proteins. Inhibition of HDAC6 decreased PC2 suggesting that HDAC6 and GRP94 work together to regulate PC2 levels. Lastly, we showed that inhibition of GRP94 prevents cAMP-induced cyst formation in vitro. Taken together our data uncovered a novel HDAC6-GRP94-related axis that likely participates in maintaining elevated PC2 levels in Pkd1 mutant cells.


Cysts/pathology , Endoplasmic Reticulum/metabolism , Kidney Diseases/pathology , Membrane Glycoproteins/metabolism , PAX8 Transcription Factor/physiology , TRPP Cation Channels/physiology , Animals , Calcium/metabolism , Cysts/etiology , Cysts/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Unfolded Protein Response
13.
Kidney360 ; 2(5): 795-808, 2021 May.
Article En | MEDLINE | ID: mdl-34316721

BACKGROUND: Recent work suggests that dysregulated cellular metabolism may play a key role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). The TAME-PKD clinical trial is testing the safety, tolerability, and efficacy of metformin, a regulator of cell metabolism, in patients with ADPKD. This study investigates the cross-sectional association of urinary metabolic biomarkers with ADPKD severity among TAME-PKD trial participants at baseline. METHODS: Concentrations of total protein, targeted metabolites (lactate, pyruvate, succinate, and cAMP), and key glycolytic enzymes (pyruvate kinase M2 [PKM2], lactate dehydrogenase A [LDHA], and pyruvate dehydrogenase kinase 1 [PDK1]) were measured by ELISA, enzymatic assays, and immunoblotting in baseline urine specimens of 95 TAME-PKD participants. These analytes, normalized by urinary creatinine or osmolality to estimate excretion, were correlated with patients' baseline height-adjusted total kidney volumes (htTKVs) by MRI and eGFR. Additional analyses were performed, adjusting for participants' age and sex, using multivariable linear regression. RESULTS: Greater htTKV correlated with lower eGFR (r=-0.39; P=0.0001). Urinary protein excretion modestly correlated with eGFR (negatively) and htTKV (positively). Urinary cAMP normalized to creatinine positively correlated with eGFR. Among glycolytic enzymes, PKM2 and LDHA excretion positively correlated with htTKV, whereas PKM2 excretion negatively correlated with eGFR. These associations remained significant after adjustments for age and sex. Moreover, in adjusted models, succinate excretion was positively associated with eGFR, and protein excretion was more strongly associated with both eGFR and htTKV in patients <43 years old. CONCLUSIONS: Proteinuria correlated with ADPKD severity, and urinary excretion of PKM2 and LDHA correlated with ADPKD severity at baseline in the TAME-PKD study population. These findings are the first to provide evidence in human urine samples that upregulated glycolytic flux is a feature of ADPKD severity. Future analysis may reveal if metformin treatment affects both disease progression and the various urinary metabolic biomarkers in patients throughout the study.


Polycystic Kidney, Autosomal Dominant , Adult , Biomarkers/metabolism , Cross-Sectional Studies , Glomerular Filtration Rate , Humans , Kidney/metabolism , Polycystic Kidney, Autosomal Dominant/complications
14.
J Am Soc Nephrol ; 32(8): 1913-1932, 2021 08.
Article En | MEDLINE | ID: mdl-34155062

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS: To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS: Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS: This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.


Cytokine TWEAK/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , TWEAK Receptor/metabolism , Adult , Animals , Antibodies, Neutralizing/pharmacology , Apoptosis , Cell Proliferation/drug effects , Cysts/metabolism , Cysts/pathology , Cytokine TWEAK/antagonists & inhibitors , Cytokine TWEAK/genetics , Cytokine TWEAK/pharmacology , Disease Models, Animal , Disease Progression , Female , Fibrosis , Gene Expression , Humans , Macrophage Activation/drug effects , Macrophages , Male , Mice , Middle Aged , NF-kappa B/metabolism , Polycystic Kidney, Autosomal Dominant/physiopathology , Signal Transduction , TWEAK Receptor/genetics
15.
Kidney Int ; 100(3): 684-696, 2021 09.
Article En | MEDLINE | ID: mdl-34186056

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by growth of kidney cysts and glomerular filtration rate (GFR) decline. Metformin was found to impact cystogenesis in preclinical models of polycystic disease, is generally considered safe and may be a promising candidate for clinical investigation in ADPKD. In this phase 2 two-year trial, we randomly assigned 97 patients, 18-60 years of age, with ADPKD and estimated GFR over 50 ml/min/1.73 m2, in a 1:1 ratio to receive metformin or placebo twice daily. Primary outcomes were medication safety and tolerability. Secondary outcomes included estimated GFR decline, and total kidney volume growth. Thirty-eight metformin and 39 placebo participants still received study product at 24-months. Twenty-one participants in the metformin arm reduced drug dose due to inability to tolerate, compared with 14 in the placebo arm (not significant). Proportions of participants experiencing serious adverse events was similar between the groups. The Gastrointestinal Symptoms Rating Scale score was low at baseline and did not significantly change over time. The annual change for estimated GFR was -1.71 with metformin and -3.07 ml/min/1.73m2 per year with placebo (mean difference 1.37 {-0.70, 3.44} ml/min/1.73m2), while mean annual percent change in height-adjusted total kidney volume was 3.87% in metformin and 2.16% per year in placebo, (mean difference 1.68% {-2.11, 5.62}). Thus, metformin in adults with ADPKD was found to be safe and tolerable while slightly reducing estimated GFR decline but not to a significant degree. Hence, evaluation of efficacy requires a larger trial, with sufficient power to detect differences in endpoints.


Cysts , Metformin , Polycystic Kidney, Autosomal Dominant , Adult , Disease Progression , Glomerular Filtration Rate , Humans , Kidney , Metformin/adverse effects , Polycystic Kidney, Autosomal Dominant/drug therapy
16.
PLoS Genet ; 16(12): e1009217, 2020 12.
Article En | MEDLINE | ID: mdl-33378371

A unifying feature of polycystin-2 channels is their localization to both primary and motile cilia/flagella. In Drosophila melanogaster, the fly polycystin-2 homologue, Amo, is an ER protein early in sperm development but the protein must ultimately cluster at the flagellar tip in mature sperm to be fully functional. Male flies lacking appropriate Amo localization are sterile due to abnormal sperm motility and failure of sperm storage. We performed a forward genetic screen to identify additional proteins that mediate ciliary trafficking of Amo. Here we report that Drosophila homologues of KPC1 and KPC2, which comprise the mammalian KIP1 ubiquitination-promoting complex (KPC), form a conserved unit that is required for the sperm tail tip localization of Amo. Male flies lacking either KPC1 or KPC2 phenocopy amo mutants and are sterile due to a failure of sperm storage. KPC is a heterodimer composed of KPC1, an E3 ligase, and KPC2 (or UBAC1), an adaptor protein. Like their mammalian counterparts Drosophila KPC1 and KPC2 physically interact and they stabilize one another at the protein level. In flies, KPC2 is monoubiquitinated and phosphorylated and this modified form of the protein is located in mature sperm. Neither KPC1 nor KPC2 directly interact with Amo but they are detected in proximity to Amo at the tip of the sperm flagellum. In summary we have identified a new complex that is involved in male fertility in Drosophila melanogaster.


Infertility, Male/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , Spermatogenesis , Ubiquitin-Protein Ligase Complexes/metabolism
17.
J Cell Sci ; 133(14)2020 07 16.
Article En | MEDLINE | ID: mdl-32513820

Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.


Polycystic Kidney, Autosomal Dominant , Animals , Glial Cell Line-Derived Neurotrophic Factor/genetics , Kidney , Kidney Tubules , Mice , Morphogenesis/genetics , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
18.
Kidney360 ; 1(12): 1363-1372, 2020 Dec 31.
Article En | MEDLINE | ID: mdl-33768205

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) has been associated with metabolic disturbances characterized by downregulation of AMP-activated protein kinase (AMPK), a critical sensor of the cellular energy status. Therapeutic activation of AMPK by metformin could inhibit cyst enlargement by inhibition of both the mammalian target of rapamycin pathway and fluid secretion via the CFTR chloride channel. METHODS: We designed a phase-2, randomized, placebo-controlled, clinical trial to assess the safety, tolerability, and efficacy of metformin on total kidney volume in adults without diabetes (age 18-60 years) with ADPKD and eGFR of ≥50 ml/min per 1.73 m2. There were no eligibility criteria relating to kidney volume. In addition to demographics and clinical/family history, baseline parameters included eGFR, total kidney and liver volumes measured by MRI, and patient-reported outcomes were ascertained by the Medical Outcomes Study Short Form-36, the Gastrointestinal Safety Rating Scale, and the HALT-PKD pain questionnaire. RESULTS: We successfully randomized 97 participants recruited from two university-based clinical sites in Baltimore and Boston. The mean age of participants was 41.9 years, 72% were female, and 94% of participants were White. The majority of study participants had early stage disease, with a mean eGFR of 86.8±19.0 ml/min per 1.73 m2. Approximately half of the study participants (48%) were classified as high risk for progression (Mayo imaging classes 1C, 1D, or 1E). There was no correlation between kidney and/or liver size and health-related quality of life (HRQoL) or gastrointestinal symptom severity. CONCLUSIONS: We report successful recruitment in this ongoing, novel, clinical trial of metformin in ADPKD, with a study sample comprising patients with early stage disease and nearly a half of participants considered at high estimated risk for progression. Participants reported a low gastrointestinal symptom burden at baseline, and HRQoL similar to that of the general population, with no differences in symptoms or HRQoL related to organomegaly. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Metformin as a Novel Therapy for Autosomal Dominant Polycystic Kidney Disease (TAME), NCT02656017.


Polycystic Kidney, Autosomal Dominant , Adolescent , Adult , Disease Progression , Female , Glomerular Filtration Rate , Humans , Middle Aged , Patient Reported Outcome Measures , Polycystic Kidney, Autosomal Dominant/drug therapy , Quality of Life , Young Adult
19.
Clin J Am Soc Nephrol ; 15(1): 80-88, 2020 01 07.
Article En | MEDLINE | ID: mdl-31628117

BACKGROUND AND OBJECTIVES: In autosomal dominant polycystic kidney disease (ADPKD), the GFR often remains normal despite significant nephron loss. Proximal tubular secretory clearance may be reduced in ADPKD before detectable changes in GFR. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We used targeted mass spectrometry to quantify secretory solutes from blood and urine samples from 31 patients with ADPKD and preserved GFR (mean eGFR =111±11 ml/min per 1.73 m2) and 25 healthy control individuals as well as from 95 patients with ADPKD and reduced GFR (mean eGFR =53±21 ml/min per 1.73 m2) and 92 individuals with non-ADPKD CKD. We used linear regression to compare the fractional excretion of each solute between ADPKD and control groups. Among 112 patients with ADPKD, we used linear regression to determine associations of solute fractional excretion with height-adjusted total kidney volume. RESULTS: After adjusting for demographics, clinical characteristics, and kidney function measures, the fractional excretions of three secretory solutes were lower in patients with ADPKD and preserved GFR compared with healthy individuals: 52% lower cinnamoylglycine excretion (95% confidence interval, 24% to 70%), 53% lower tiglylglycine excretion (95% confidence interval, 23% to 71%), and 91% lower xanthosine excretion (95% confidence interval, 83% to 95%). In addition to lower excretions of tiglylglycine and xanthosine, patients with ADPKD and reduced GFR also demonstrated 37% lower dimethyluric acid excretion (95% confidence interval, 21% to 50%), 58% lower hippurate excretion (95% confidence interval, 48% to 66%), 48% lower isovalerylglycine excretion (95% confidence interval, 37% to 56%), and 31% lower pyridoxic acid excretion (95% confidence interval, 16% to 42%) compared with patients with non-ADPKD CKD and comparable eGFR. Among patients with ADPKD, solute fractional excretions were not associated with differences in kidney volume. CONCLUSIONS: Patients with ADPKD and preserved and reduced GFR demonstrate lower tubular secretory solute excretion compared with healthy controls and patients with non-ADPKD CKD. Our results suggest that tubular secretion is impaired in ADPKD independent of GFR.


Kidney Tubules, Proximal/physiopathology , Polycystic Kidney, Autosomal Dominant/physiopathology , Renal Elimination , Adult , Biomarkers/blood , Biomarkers/urine , Case-Control Studies , Cross-Sectional Studies , Female , Glomerular Filtration Rate , Glycine/analogs & derivatives , Glycine/blood , Glycine/urine , Humans , Kidney Tubules, Proximal/metabolism , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/metabolism , Prospective Studies , Ribonucleosides/blood , Ribonucleosides/urine , Secretory Pathway , Xanthines/blood , Xanthines/urine
20.
BMC Nephrol ; 20(1): 386, 2019 10 25.
Article En | MEDLINE | ID: mdl-31653199

BACKGROUND: Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) often develop hypertension in childhood or early adulthood. Although this could result in left ventricular hypertrophy (LVH), a major risk factor for cardiovascular morbidity and mortality, prior studies of LVH in ADPKD have yielded conflicting results. We estimated the prevalence of LVH using consensus echocardiography criteria and examined the independent association of ADPKD severity with LV mass in a contemporary cohort of ADPKD patients. METHODS: Adults with ADPKD and eGFR> 15 ml/min/1.73m2 were enrolled in a single-center study. Left Ventricular Mass (LVM) was quantified using 2D echocardiography, and LVH was defined using gender-specific cut-points of LVM and LVM indexed to body surface area (LVMI) from consensus guidelines. Total Kidney Volume (TKV) was quantified using Magnetic Resonance Imaging, and GFR was estimated from serum creatinine using the CKD-Epi equation. Multiple linear regression was used to estimate the association of TKV and eGFR with LVM and LVMI, adjusting for potential confounders. RESULTS: Among 126 participants (78% with hypertension), median age was 46 years, median eGFR 63 ml/min/1.73 m2, and median [IQR] systolic blood pressure was 125 [116-133] mmHg. Prevalence of LVH was 21.4% as defined by LVMI and was not significantly different (p = 0.8) between those with and without HTN, and was similar (21.4%) after excluding those (N = 21) with known cardiac disease. Greater TKV and lower eGFR were directly correlated with greater LVMI (p = .016 and p < .001, respectively). In multiple linear regression models accounting for potential confounders including blood pressure, greater TKV was positively associated with LVM ([Formula: see text] =0.19, p = 0.04). CONCLUSIONS: In a contemporary cohort of ADPKD patients with well-controlled blood pressure, the prevalence of LVH is high, and ADPKD severity as reflected by TKV is independently associated with greater LV mass. These results may suggest a relationship between ADPKD pathophysiology and increased LV mass.


Hypertrophy, Left Ventricular/epidemiology , Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Dominant/pathology , Adult , Blood Pressure , Cohort Studies , Comorbidity , Echocardiography , Female , Glomerular Filtration Rate , Humans , Hypertension/epidemiology , Hypertrophy, Left Ventricular/diagnostic imaging , Male , Middle Aged , Organ Size , Patient Acuity , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/physiopathology , Prevalence
...