Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(1): 29-37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197312

RESUMEN

The primary mode of metabolism of nicotine is via the formation of cotinine by the enzyme CYP2A6. Cotinine undergoes further CYP2A6-mediated metabolism by hydroxylation to 3-hydroxycotinine and norcotinine, but can also form cotinine-N-glucuronide and cotinine-N-oxide (COX). The goal of this study was to investigate the enzymes that catalyze COX formation and determine whether genetic variation in these enzymes may affect this pathway. Specific inhibitors of major hepatic cytochrome P450 (P450) enzymes were used in cotinine-N-oxidation reactions using pooled human liver microsomes (HLMs). COX formation was monitored by ultrahigh-pressure liquid chromatography-tandem mass spectrometry and enzyme kinetic analysis was performed using microsomes from P450-overexpressing human embryonic kidney 293 (HEK293) cell lines. Genotype-phenotype analysis was performed in a panel of 113 human liver specimens. Inhibition of COX formation was only observed in HLMs when using inhibitors of CYP2A6, CYP2B6, CYP2C19, CYP2E1, and CYP3A4. Microsomes from cells overexpressing CYP2A6 or CYP2C19 exhibited similar N-oxidation activity against cotinine, with maximum reaction rate over Michaelis constant values (intrinsic clearance) of 4.4 and 4.2 nL/min/mg, respectively. CYP2B6-, CYP2E1-, and CYP3A4-overexpressing microsomes were also active in COX formation. Significant associations (P < 0.05) were observed between COX formation and genetic variants in CYP2C19 (*2 and *17 alleles) in HLMs. These results demonstrate that genetic variants in CYP2C19 are associated with decreased COX formation, potentially affecting the relative levels of cotinine in the plasma or urine of smokers and ultimately affecting recommended smoking cessation therapies. SIGNIFICANCE STATEMENT: This study is the first to elucidate the enzymes responsible for cotinine-N-oxide formation and genetic variants that affect this biological pathway. Genetic variants in CYP2C19 have the potential to modify nicotine metabolic ratio in smokers and could affect pharmacotherapeutic decisions for smoking cessation treatments.


Asunto(s)
Cotinina , Nicotina , Humanos , Cotinina/metabolismo , Nicotina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Cinética , Citocromo P-450 CYP2B6/metabolismo , Células HEK293 , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo
2.
Cancer Epidemiol Biomarkers Prev ; 32(1): 54-65, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36252563

RESUMEN

BACKGROUND: Nicotine metabolism is a major factor in nicotine dependence, with approximately 70% to 80% of nicotine metabolized to cotinine in Caucasians. Cotinine formation is catalyzed primarily by CYP2A6, which also converts cotinine to trans-3'-hydroxycotinine (3HC). The goal of the present study was to examine the effects of CYP2A6 deficiency on nicotine metabolism profiles in vivo and the importance of genetic variants in nicotine-metabolizing enzyme genes on urinary nicotine metabolites levels. METHODS: Urine samples from 722 smokers who participated in the Singapore Chinese Health Study were analyzed using UPLC-MS/MS to detect nicotine and eight of its urinary metabolites, and a total of 58 variants in 12 genes involved in nicotine metabolism were investigated in 475 of these subjects with informative genotyping data. RESULTS: Urine samples stratified by the ratio of 3HC/cotinine exhibited a 7-fold increase in nicotine-N'-oxide, a 6-fold increase in nicotine-Glucuronide (Gluc), and a 5-fold decrease in 3HC-Gluc when comparing the lower versus upper 3HC/cotinine ventiles. Significant (P < 0.0001) associations were observed between functional metabolizing enzyme genotypes and levels of various urinary nicotine metabolites, including CYP2A6 genotype and levels of nicotine, nicotine-Gluc, nicotine-N'-oxide and 3HC, UGT2B10 genotype and levels of cotinine, nicotine-Gluc and cotinine-Gluc, UGT2B17 genotype and levels of 3HC-Gluc, FMO3 genotype and levels of nicotine-N'-oxide, and CYP2B6 genotype and levels of nicotine-N'-oxide and 4-hydroxy-4-(3-pyridyl)-butanoic acid. CONCLUSIONS: These data suggest that several pathways are important in nicotine metabolism. IMPACT: Genotype differences in several nicotine-metabolizing enzyme pathways may potentially lead to differences in nicotine dependence and smoking behavior and cessation.


Asunto(s)
Nicotina , Tabaquismo , Humanos , Nicotina/orina , Cotinina , Fumadores , Cromatografía Liquida , Espectrometría de Masas en Tándem , Citocromo P-450 CYP2A6/genética , Genotipo , Glucuronosiltransferasa/genética
3.
Expert Rev Clin Pharmacol ; 15(12): 1443-1460, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36384377

RESUMEN

INTRODUCTION: Cannabis is an increasingly popular recreational and medicinal drug in the USA. While cannabis is still a Schedule 1 drug federally, many states have lifted the ban on its use. With its increased usage, there is an increased possibility for potential drug-drug interactions (DDI) that may occur with concomitant use of cannabis and pharmaceuticals. AREA COVERED: This review focuses on the current knowledge of cannabis induced DDI, with a focus on pharmacokinetic DDI arising from enzyme inhibition or induction. Phase I and phase II drug metabolizing enzymes, specifically cytochrome P450s, carboxylesterases, and uridine-5'-diphosphoglucuronosyltransferases, have historically been the focus of research in this field, with much of the current knowledge of the potential for cannabis to induce DDI within these families of enzymes coming from in vitro enzyme inhibition studies. Together with a limited number of in vivo clinical studies and in silico investigations, current research suggests that cannabis exhibits the potential to induce DDI under certain circumstances. EXPERT OPINION: Based upon the current literature, there is a strong potential for cannabis-induced DDI among major drug-metabolizing enzymes.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Humanos , Cannabinoides/efectos adversos , Cannabis/efectos adversos , Interacciones Farmacológicas , Sistema Enzimático del Citocromo P-450 , Agonistas de Receptores de Cannabinoides
4.
Mol Pharmacol ; 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953090

RESUMEN

Exemestane (EXE) is an aromatase inhibitor used to treat hormone-dependent breast cancer. EXE is extensively metabolized, with unchanged EXE and its active metabolite 17-dihydroexemestane (17-DHE) accounting for 17 and 12%, respectively, of total plasma EXE in vivo The major circulating EXE metabolites are the cysteine conjugates of EXE and 17-DHE, and the 17-DHE glucuronide, which together account for 70% of total plasma EXE in vivo The goal of the present study was to examine the inhibition potential of major metabolites of EXE through inhibition assays using aromatase-overexpressing cells and pooled ovarian tissues. Estrone formation was used as a measure of aromatase activity and was detected and quantified using UPLC-MS. EXE-cys, 17ß-DHE, and 17ß-DHE-cys all exhibited inhibition of estrone formation at both 1 µM and 10 µM concentrations, with 17ß-DHE and EXE-cys showing significant inhibition of estrone formation (63% each) at 10 µM. In contrast, 17ß-DHE-Gluc displayed minimal inhibition (5-8%) at both concentrations. In ovarian tissue, EXE-cys and 17ß-DHE showed similar patterns of inhibition, with 49% and 47% inhibition, respectively, at 10 µM. The IC50 value for EXE-cys (16 {plus minus} 10 µM) was similar to 17ß-DHE (9.2 {plus minus} 2.7 µM) and higher than EXE (1.3 {plus minus} 0.28 µM), and all three compounds showed time-dependent inhibition with IC50 shifts of 13 {plus minus} 10, 5.0 {plus minus} 2.5 and 36 {plus minus} 12-fold, respectively. Given its high circulating levels in patients taking EXE, these results suggest that EXE-cys may contribute to the pharmacologic effect of EXE in vivo Significance Statement The current study is the first to examine the major phase II metabolites of EXE (EXE-cys, 17ß-DHE-cys, and 17ß-DHE-Gluc) for inhibition potential against the target enzyme, aromatase (CYP19A1). EXE-cys was found to significantly inhibit aromatase in a time dependent manner. Given its high circulating levels in patients taking EXE, this phase II metabolite may play an important role in reducing circulating estrogen levels in vivo.

5.
Hosp Pharm ; 57(4): 518-525, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35898257

RESUMEN

Objective: To determine if a 2-day protocol measuring pharmacokinetic and pharmacodynamic characteristics can demonstrate drug-drug interactions when smoked cannabis is added to orally administered hydrocodone/acetaminophen combination products. Case Summary: A 51-year-old non-Hispanic white male with chronic pain diagnoses participated in a 2-day pilot protocol. The participant attended two 7-hour in-lab days where he received 10 blood draws each day and completed self-administered pain and anxiety surveys. For both days, the participant took his prescribed dose of hydrocodone/acetaminophen (1/2 tablet of 7.5 mg/325 mg combination product) with the addition of 1 smoked pre-rolled marijuana cigarette (labeled as 0.5 g; 22.17% Δ9-tetrahydrocannabinol; 0.12% cannabidiol) on Day 2. Blood specimens were analyzed using mass spectrometry to quantify the difference of plasma hydrocodone levels between Day 1 and Day 2. Results: Compared to Day 1, lower levels of pain and anxiety were reported during Day 2 with the addition of cannabis to oral hydrocodone/acetaminophen. Day 2 pharmacokinetic analysis also revealed more rapid absorption and overall lower levels of hydrocodone in plasma. Discussion: Lower hydrocodone plasma levels in Day 2 may indicate cannabis's effect on metabolism and reduce the risk of opioid toxicity. The quicker absorption rate of hydrocodone could explain lower pain and anxiety scores reported on the second day. Conclusion and Relevance: A 2-day protocol was able to capture differences across time in pharmacokinetic and pharmacodynamic measurements. Larger studies can be designed to better characterize the potential drug-drug interaction of cannabis and opioids.

6.
J Pharmacol Exp Ther ; 382(3): 327-334, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35793834

RESUMEN

Exemestane (EXE) is used to treat postmenopausal women diagnosed with estrogen receptor positive (ER+) breast cancer. A major mode of metabolism of EXE and its active metabolite, 17ß-dihydroexemestane, is via glutathionylation by glutathione-S-transferase (GST) enzymes. The goal of the present study was to investigate the effects of genetic variation in EXE-metabolizing GST enzymes on overall EXE metabolism. Ex vivo assays examining human liver cytosols from 75 subjects revealed the GSTA1 *B*B genotype was associated with significant decreases in S-(androsta-1,4-diene-3,17-dion-6α-ylmethyl)-L-glutathione (P = 0.034) and S-(androsta-1,4-diene-17ß-ol-3-on-6α-ylmethyl)-L-gutathione (P = 0.014) formation. In the plasma of 68 ER+ breast cancer patients treated with EXE, the GSTA1 *B*B genotype was associated with significant decreases in both EXE-cysteine (cys) (29%, P = 0.0056) and 17ß-DHE-cys (34%, P = 0.032) as compared with patients with the GSTA1*A*A genotype, with significant decreases in EXE-cys (Ptrend = 0.0067) and 17ß-DHE-cys (Ptrend = 0.028) observed in patients with increasing numbers of the GSTA1*B allele. A near-significant (Ptrend = 0.060) trend was also observed for urinary EXE-cys levels from the same patients. In contrast, plasma and urinary 17ß-DHE-Gluc levels were significantly increased (36%, P = 0.00097 and 52%, P = 0.0089; respectively) in patients with the GSTA1 *B*B genotype. No significant correlations were observed between the GSTM1 null genotype and EXE metabolite levels. These data suggest that the GSTA1*B allele is associated with interindividual differences in EXE metabolism and may play a role in interindividual variability in overall response to EXE. SIGNIFICANCE STATEMENT: The present study is the first comprehensive pharmacogenomic investigation examining the role of genetic variability in GST enzymes on exemestane metabolism. The GSTA1 *B*B genotype was found to contribute to interindividual differences in the metabolism of EXE both ex vivo and in clinical samples from patients taking EXE for the treatment of ER+ breast cancer. Since GSTA1 is a major hepatic phase II metabolizing enzyme in EXE metabolism, the GSTA1*B allele may be an important biomarker for treatment outcomes and toxicities.


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Alelos , Androstadienos/farmacología , Androstadienos/uso terapéutico , Inhibidores de la Aromatasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Citosol/metabolismo , Femenino , Glutatión , Glutatión Transferasa/genética , Humanos , Hígado/metabolismo
7.
Drug Metab Dispos ; 49(12): 1047-1055, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34593616

RESUMEN

Exemestane (EXE) is a hormonal therapy used to treat estrogen receptor-positive breast cancer by inhibiting the final step of estrogen biosynthesis catalyzed by the enzyme aromatase. Cysteine conjugates of EXE and its active metabolite 17ß-dihydro-EXE (DHE) are the major metabolites found in both the urine and plasma of patients taking EXE. The initial step in cysteine conjugate formation is glutathione conjugation catalyzed by the glutathione S-transferase (GST) family of enzymes. The goal of the present study was to identify cytosolic hepatic GSTs active in the GST-mediated metabolism of EXE and 17ß-DHE. Twelve recombinant cytosolic hepatic GSTs were screened for their activity against EXE and 17ß-DHE, and glutathionylated EXE and 17ß-DHE conjugates were detected by ultra-performance liquid chromatography tandem mass spectrometry. GST α (GSTA) isoform 1, GST µ (GSTM) isoform 3 and isoform 1 were active against EXE, whereas only GSTA1 exhibited activity against 17ß-DHE. GSTM1 exhibited the highest affinity against EXE with a Michaelis-Menten constant (KM) value that was 3.8- and 7.1-fold lower than that observed for GSTA1 and GSTM3, respectively. Of the three GSTs, GSTM3 exhibited the highest intrinsic clearance against EXE (intrinsic clearance = 0.14 nl·min-1·mg-1). The KM values observed for human liver cytosol against EXE (46 µM) and 17ß-DHE (77 µM) were similar to those observed for recombinant GSTA1 (53 and 30 µM, respectively). Western blot analysis revealed that GSTA1 and GSTM1 composed 4.3% and 0.57%, respectively, of total protein in human liver cytosol; GSTM3 was not detected. These data suggest that GSTA1 is the major hepatic cytosolic enzyme involved in the clearance of EXE and its major active metabolite, 17ß-DHE. SIGNIFICANCE STATEMENT: Most previous studies related to the metabolism of the aromatase inhibitor exemestane (EXE) have focused mainly on phase I metabolic pathways and the glucuronidation phase II metabolic pathway. However, recent studies have indicated that glutathionylation is the major metabolic pathway for EXE. The present study is the first to characterize hepatic glutathione S-transferase (GST) activity against EXE and 17ß-dihydro-EXE and to identify GST α 1 and GST µ 1 as the major cytosolic GSTs involved in the hepatic metabolism of EXE.


Asunto(s)
Androstadienos/farmacocinética , Neoplasias de la Mama , Glutatión Transferasa/metabolismo , Inactivación Metabólica/fisiología , Hígado/enzimología , Antineoplásicos Hormonales/farmacocinética , Inhibidores de la Aromatasa/farmacocinética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Cromatografía Liquida , Cisteína/metabolismo , Citosol/metabolismo , Estrógenos/biosíntesis , Glutatión Transferasa/química , Eliminación Hepatobiliar/fisiología , Humanos , Isoformas de Proteínas , Receptores de Estrógenos
8.
Drug Metab Dispos ; 49(12): 1081-1089, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34493601

RESUMEN

The UDP-glucuronosyltransferase (UGT) family of enzymes play a central role in the metabolism and detoxification of a wide range of endogenous and exogenous compounds. UGTs exhibit a high degree of structural similarity and display overlapping substrate specificity, often making estimations of potential drug-drug interactions difficult to fully elucidate. One such interaction yet to be examined may be occurring between UGTs and cannabinoids, as the legalization of recreational and medicinal cannabis and subsequent co-usage of cannabis and therapeutic drugs increases in the United States and internationally. In the present study, the inhibition potential of the major cannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as their major metabolites, was determined in microsomes isolated from HEK293 cells overexpressing individual recombinant UGTs and in microsomes from human liver and kidney specimens. The highest inhibition was seen by CBD against the glucuronidation activity of UGTs 1A9, 2B4, 1A6, and 2B7, with binding-corrected IC50 values of 0.12 ± 0.020 µM, 0.22 ± 0.045 µM, 0.40 ± 0.10 µM, and 0.82 ± 0.15 µM, respectively. Strong inhibition of UGT1A9 was also demonstrated by THC and CBN, with binding-corrected IC50 values of 0.45 ± 0.12 µM and 0.51 ± 0.063 µM, respectively. Strong inhibition of UGT2B7 was also observed for THC and CBN; no or weak inhibition was observed with cannabinoid metabolites. This inhibition of UGT activity suggests that in addition to playing an important role in drug-drug interactions, cannabinoid exposure may have important implications in patients with impaired hepatic or kidney function. SIGNIFICANCE STATEMENT: Major cannabinoids found in the plasma of cannabis users inhibit several UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6, UGT1A9, UGT2B4, and UGT2B7. This study is the first to show the potential of cannabinoids and their metabolites to inhibit all the major kidney UGTs as well as the two most abundant UGTs present in liver. This study suggests that as all three major kidney UGTs are inhibited by cannabinoids, greater drug-drug interaction effects might be observed from co-use of cannabinods and therapeutics that are cleared renally.


Asunto(s)
Cannabidiol/metabolismo , Cannabinoides/metabolismo , Cannabinol/metabolismo , Cannabis , Dronabinol/metabolismo , Glucuronosiltransferasa , Cannabinoides/clasificación , Interacciones Farmacológicas , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Células HEK293 , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Microsomas/metabolismo , Eliminación Renal/efectos de los fármacos
9.
Drug Metab Dispos ; 49(12): 1070-1080, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34493602

RESUMEN

The legalization of cannabis in many parts of the United States and other countries has led to a need for a more comprehensive understanding of cannabis constituents and their potential for drug-drug interactions. Although (-)-trans-Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) are the most abundant cannabinoids present in cannabis, THC metabolites are found in plasma at higher concentrations and for a longer duration than that of the parent cannabinoids. To understand the potential for drug-drug interactions, the inhibition potential of major cannabinoids and their metabolites on major hepatic cytochrome P450 (P450) enzymes was examined. In vitro assays with P450-overexpressing cell microsomes demonstrated that the major THC metabolites 11-hydroxy-Δ9-tetra-hydrocannabinol and 11-nor-9-carboxy-Δ9-THC-glucuronide competitively inhibited several major P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6 (apparent Ki,u values = 0.086 ± 0.066 µM and 0.90 ± 0.54 µM, 0.057 ± 0.044 µM and 2.1 ± 0.81 µM, 0.15 ± 0.067 µM and 2.3 ± 0.54 µM, respectively). 11-Nor-9-carboxy-Δ9- tetrahydrocannabinol exhibited no inhibitory activity against any CYP450 tested. THC competitively inhibited CYP1A2, CYP2B6, CYP2C9, and CYP2D6; CBD competitively inhibited CYP3A4, CYP2B6, CYP2C9, CYP2D6, and CYP2E1; and CBN competitively inhibited CYP2B6, CYP2C9, and CYP2E1. THC and CBD showed mixed-type inhibition for CYP2C19 and CYP1A2, respectively. These data suggest that cannabinoids and major THC metabolites are able to inhibit the activities of multiple P450 enzymes, and basic static modeling of these data suggest the possibility of pharmacokinetic interactions between these cannabinoids and xenobiotics extensively metabolized by CYP2B6, CYP2C9, and CYP2D6. SIGNIFICANCE STATEMENT: Major cannabinoids and their metabolites found in the plasma of cannabis users inhibit several P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6. This study is the first to show the inhibition potential of the most abundant plasma cannabinoid metabolite, THC-COO-Gluc, and suggests that circulating metabolites of cannabinoids play an essential role in CYP450 enzyme inhibition as well as drug-drug interactions.


Asunto(s)
Cannabidiol/metabolismo , Cannabinoides , Cannabinol/metabolismo , Cannabis , Sistema Enzimático del Citocromo P-450 , Dronabinol/análogos & derivados , Interacciones Farmacológicas/fisiología , Biotransformación , Cannabinoides/clasificación , Cannabinoides/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/clasificación , Dronabinol/metabolismo , Glucuronosiltransferasa/metabolismo , Células HEK293 , Eliminación Hepatobiliar/efectos de los fármacos , Humanos
10.
Chem Res Toxicol ; 33(11): 2854-2862, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32993298

RESUMEN

The UDP-glycosyltransferase (UGT) family of enzymes are important in the metabolism of a variety of exogenous substances including polycyclic aromatic hydrocarbons (PAHs), a potent class of environmental carcinogens. As compared to the majority of UGT enzymes, which utilize UDP-glucuronic acid as a cosubstrate, UGT3A2 utilizes alternative cosubstrates (UDP-glucose and UDP-xylose). UGT3A2 is expressed in aerodigestive tract tissues and was highly active against multiple PAHs with both cosubstrates. The goal of the present study was to assess the functional effects of UGT3A2 missense variants (MAF ≥ 0.005) on PAH metabolism and the utilization of cosubstrates. The glycosylation activity (Vmax/Km) of all variants against simple PAHs using both cosubstrates was significantly (P < 0.05) decreased by 42-100% when compared to wild-type UGT3A2. When utilizing UDP-glucose, the variant isoforms exhibited up to a 362-fold decrease in Vmax/Km when compared to wild-type UGT3A2, with a 3.1- to 14-fold decrease for D140N, A344T, and S435Y, a 24- and 43-fold decrease for A436T and R445C, respectively, and a 147- and 362-fold decrease for Y474C and Y74N, respectively. When utilizing UDP-xylose, the variants exhibited up to a 4.0-fold decrease in Vmax/Km when compared to wild-type UGT3A2; Y74N did not exhibit activity, and Y474C did not reach saturation (Km > 4000 µM). Additionally, both wild-type and variant UGT3A2 exhibited a significant (P < 0.05) difference in their utilization of UDP-glucose vs UDP-xylose as cosubstrates using 1-OH-pyrene as substrate. These data suggest that UGT3A2 missense variants decrease the detoxification of PAHs, potentially resulting in altered individual risk for PAH-related cancers.


Asunto(s)
Glicosiltransferasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Glicosiltransferasas/genética , Células HEK293 , Humanos , Mutación Missense
11.
PLoS One ; 15(6): e0225044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32603335

RESUMEN

Cellular stress response mechanisms normally function to enhance survival and allow for cells to return to homeostasis following an adverse event. Cancer cells often co-opt these same mechanisms as a means to evade apoptosis and mitigate a state of constant cellular stress. Activating transcription factor 5 (ATF5) is upregulated under diverse stress conditions and is overexpressed in a variety of cancers. It was demonstrated ATF5 is a survival factor in transformed, but not normal cells. However, the regulation of ATF5 is not fully understood. The purpose of the present study was to investigate miRNA regulation at the 3' untranslated region (UTR) of ATF5, with the goal of demonstrating a reversal of the upregulation of ATF5 induced under diverse cellular stress in cancer cells. A multifactorial approach using in silico analysis was employed to identify miRNAs 433-3p, 520b-3p, and 129-5p as potential regulators of ATF5, based on their predicted binding sites over the span of the ATF5 3' UTR. Luciferase reporter assay data validated all three miRNA candidates by demonstrating direct binding to the target ATF5 3'. However, functional studies revealed miR-520b-3p as the sole candidate able to reverse the upregulation of ATF5 protein under diverse cellular stress. Additionally, miR-520b-3p levels were inversely related to ATF5 mRNA under endoplasmic reticulum stress and amino acid deprivation. This is the first evidence that regulation at the 3' UTR is involved in modulating ATF5 levels under cellular stress and suggests an important role for miRNA-520b-3p in the regulation of ATF5.


Asunto(s)
Factores de Transcripción Activadores/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Células HeLa , Humanos , Células MCF-7 , Estrés Fisiológico/genética
12.
PLoS One ; 15(5): e0233111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453764

RESUMEN

Bangladesh exhibits the second highest rate of smokeless tobacco (SLT) product usage in the world, and this has been associated with the high upper aerodigestive tract cancer incidence in this country. The goal of the present study was to examine the levels of the highly carcinogenic tobacco-specific nitrosamines (TSNAs) in Bangladeshi SLT products and compare these levels to that observed in SLT brands from southeast Asia and the USA. The levels of TSNAs and nicotine were determined by LC-MS/MS in twenty-eight SLT brands and several tobacco additives from Bangladesh, as well as several SLT brands from India, Pakistan and the USA. The levels of N-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosoanatabine (NAT) and N-nitrosoanabasine (NAB) in Bangladeshi SLT brands ranged from 1.1-59, 0.15-34, 0.79-45, and 0.037-13 µg/g SLT powder, respectively. The mean levels of the highly carcinogenic TSNAs (NNN+NNK) were 7.4-, 2.4-, and 63-fold higher in Bangladeshi SLT products as compared to SLT brands from the USA, India and Pakistan, respectively; these trends were also observed for NAT and NAB. Similar mean levels of nicotine were observed in the Bangladeshi brands (31 mg/g powder) versus brands from the USA (25 mg/g powder) and India (20 mg/g powder); they were 3-fold higher than brands from Pakistan (10 mg/g powder). Gul SLT brands exhibited the highest pH and the highest levels of unprotonated nicotine. The high levels of TSNAs in Bangladeshi SLT brands may be an important factor contributing to the high rates of upper aerodigestive tract cancer in Bangladesh.


Asunto(s)
Nicotiana/química , Nitrosaminas/análisis , Tabaco sin Humo/análisis , Bangladesh , Cromatografía Liquida , Nicotina/análisis , Espectrometría de Masas en Tándem , Productos de Tabaco/análisis
13.
Drug Metab Dispos ; 48(3): 160-168, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31836608

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens and are a primary risk factor for the development of lung and other aerodigestive tract cancers in smokers. The detoxification of PAHs by glucuronidation is well-characterized for the UDP-glycosyltransferase (UGT) 1A, 2A, and 2B subfamilies; however, the role of the UGT3A subfamily in PAH metabolism remains poorly understood. UGT3A enzymes are functionally distinct from other UGT subfamilies (which use UDP-glucuronic acid as a cosubstrate) due to their utilization of alternative cosubstrates (UDP-N-acetylglucosamine for UGT3A1, and UDP-glucose and UDP-xylose for UGT3A2). The goal of the present study was to characterize UGT3A glycosylation activity against PAHs and examine their expression in human aerodigestive tract tissues. In vitro metabolism assays using UGT3A2-overexpressing cell microsomes indicated that UGT3A2 exhibits glycosylation activity against all of the simple and complex PAHs tested. The V max/K m ratios for UGT3A2 activity with UDP-xylose versus UDP-glucose as the cosubstrate ranged from 0.65 to 4.4 for all PAHs tested, demonstrating that PAH glycosylation may be occurring at rates up to 4.4-fold higher with UDP-xylose than with UDP-glucose. Limited glycosylation activity was observed against PAHs with UGT3A1-overexpressing cell microsomes. While UGT3A2 exhibited low levels of hepatic expression, it was shown by western blot analysis to be widely expressed in aerodigestive tract tissues. Conversely, UGT3A1 exhibited the highest expression in liver with lower expression in aerodigestive tract tissues. These data suggest that UGT3A2 plays an important role in the detoxification of PAHs in aerodigestive tract tissues, and that there may be cosubstrate-dependent differences in the detoxification of PAHs by UGT3A2. SIGNIFICANCE STATEMENT: UGT3A2 is highly active against PAHs with either UDP-glucose or UDP-xylose as a cosubstrate. UGT3A1 exhibited low levels of activity against PAHs. UGT3A1 is highly expressed in liver while UGT3A2 is well expressed in extrahepatic tissues. UGT3A2 may be an important detoxifier of PAHs in humans.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Glucuronosiltransferasa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sistema Respiratorio/metabolismo , Línea Celular , Glucosa/metabolismo , Glicosiltransferasas/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Pulmón/metabolismo , Microsomas/metabolismo , Uridina Difosfato Glucosa/metabolismo
14.
J Pharmacol Exp Ther ; 372(1): 21-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628204

RESUMEN

During tobacco and e-cigarette use, nicotine is mainly metabolized in the human liver by cytochrome P450 2A6 (CYP2A6). Given that a slower CYP2A6 metabolism has been associated with less vulnerability to develop nicotine dependence, the current studies sought to validate a novel CYP2A6 inhibitor, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), for its effects on intravenous nicotine self-administration. Male and female mice were trained to self-administer nicotine across daily sessions. Once stable responding was achieved, DLCI-1 or vehicle control was administered prior to nicotine sessions. We found that the lower 25 mg/kg and moderate 50 mg/kg doses of DLCI-1 induced a significant decrease in nicotine intake for both males and females. DLCI-1 was further shown to be more effective than a moderate 1 mg/kg dose of bupropion on reducing nicotine intake and did not exert the adverse behavioral effects found with a high 75 mg/kg dose of bupropion. Although mice treated with DLCI-1 self-administered significantly less nicotine, similar nicotine-mediated behavioral effects on locomotion were observed. Together, along with the analysis of nicotine metabolites during self-administration, these findings support the contention that blocking hepatic nicotine metabolism would allow for similar activation of nicotinic acetylcholine receptors at lower nicotine doses. Moreover, these effects of DLCI-1 were specific to nicotine self-administration, as DLCI-1 did not result in any behavioral changes during food self-administration. Taken together, these studies validate DLCI-1 as a novel compound to decrease nicotine consumption, which may thereby promote tobacco and nicotine product cessation. SIGNIFICANCE STATEMENT: Current pharmacological approaches for nicotine and tobacco cessation have only been able to achieve limited efficaciousness in promoting long-term abstinence. In this work, we characterize the effects of a novel compound, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), which inhibits the main enzyme that metabolizes nicotine, and we report a significant decrease in intravenous nicotine self-administration in male and female mice, supporting the potential of DLCI-1 as a novel tobacco cessation pharmacotherapeutic.


Asunto(s)
Citocromo P-450 CYP2A6/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Agentes para el Cese del Hábito de Fumar/uso terapéutico , Tiofenos/uso terapéutico , Tabaquismo/tratamiento farmacológico , Animales , Citocromo P-450 CYP2A6/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/metabolismo , Agentes para el Cese del Hábito de Fumar/administración & dosificación , Agentes para el Cese del Hábito de Fumar/efectos adversos , Agentes para el Cese del Hábito de Fumar/farmacología , Tiofenos/administración & dosificación , Tiofenos/efectos adversos , Tiofenos/farmacología
15.
Drug Metab Dispos ; 47(12): 1388-1396, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578206

RESUMEN

Menthol, which creates mint flavor and scent, is often added to tobacco in both menthol and nonmenthol cigarettes. A potent tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is extensively metabolized to its equally carcinogenic metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) as (R)- or (S)-NNAL enantiomers. NNAL is detoxified by UDP-glucuronosyltransferase (UGT) enzymes, with glucuronidation occurring on either NNAL's pyridine ring nitrogen (NNAL-N-Gluc) or the chiral alcohol [(R)- or (S)-NNAL-O-Gluc]. To characterize a potential effect by menthol on NNAL glucuronidation, in vitro menthol glucuronidation assays and menthol inhibition of NNAL-Gluc formation assays were performed. Additionally, NNAL and menthol glucuronides (MG) were measured in the urine of smokers (n = 100) from the Southern Community Cohort Study. UGTs 1A9, 1A10, 2A1, 2A2, 2A3, 2B4, 2B7, and 2B17 all exhibited glucuronidating activity against both l- and d-menthol. In human liver microsomes, both l- and d-menthol inhibited the formation of each NNAL-Gluc, with a stereospecific difference observed between the formation of (R)-NNAL-O-Gluc and (S)-NNAL-O-Gluc in the presence of d-menthol but not l-menthol. With the exception of three nonmenthol cigarette smokers, urinary MG was detected in all menthol and nonmenthol smokers, with l-MG comprising >98% of total urinary MG. Levels of urinary NNAL-N-Gluc were significantly (P < 0.05) lower among subjects with high levels of total urinary MG; no significant changes in free NNAL were observed. These data suggest that the presence of menthol could lead to increases in alternative, activating metabolic pathways of NNAL in tobacco target tissues, increasing the opportunity for NNAL to damage DNA and lead to the development of tobacco-related cancers. SIGNIFICANCE STATEMENT: High levels of the major menthol metabolite, menthol-glucuronide, was observed in the urine of smokers of either menthol or nonmenthol cigarettes. The fact that a significant inverse correlation was observed between the levels of urinary menthol-glucuronide and NNAL-N-glucuronide, a major detoxification metabolite of the tobacco carcinogen, NNK, suggests that menthol may inhibit clearance of this important tobacco carcinogen.


Asunto(s)
Carcinógenos/metabolismo , Glucurónidos/orina , Mentol/orina , Microsomas Hepáticos/metabolismo , Nitrosaminas/metabolismo , Nitrosaminas/orina , Fumar/orina , Estudios de Cohortes , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Células HEK293 , Humanos , Mentol/metabolismo , Fumar/metabolismo , Estereoisomerismo , Productos de Tabaco , Transfección
16.
Mol Pharmacol ; 96(6): 674-682, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31554697

RESUMEN

The UDP-glucuronosyltransferase (UGT) family of enzymes is important in the metabolic elimination of a variety of endogenous compounds such as bile acids, steroids, and fat-soluble vitamins, as well as exogenous compounds including many pharmaceuticals. The UGT2B subfamily is a major family of UGT enzymes expressed in human liver. The identification of novel mechanisms including post-transcriptional regulation by microRNA (miRNA) contributes to interindividual variability in UGT2B expression and is a crucial component in predicting patient drug response. In the present study, a high-resolution liquid chromatography-tandem mass spectrometry method was employed to measure UGT2B protein levels in a panel of human liver microsomal samples (n = 62). Concurrent in silico analysis identified eight candidate miRNAs as potential regulators of UGT2B enzymes. Comparison of UGT2B protein expression and candidate miRNA levels from human liver samples demonstrated a significant inverse correlation between UGT2B10 and UGT2B15 and one of these candidate miRNAs, miR-485-5p. A near-significant correlation was also observed between UGT2B7 and miR-485-5p expression. In vitro analysis using luciferase-containing vectors suggested an interaction of miR-485-5p within the UGT2B10 3'-untranslated region (UTR), and significant reduction in luciferase activity was also observed for a luciferase vector containing the UGT2B7 3'-UTR; however, none was observed for the UBT2B15 3'-UTR. UGT2B10 and UGT2B7 activities were probed using nicotine and 3'-azido-3'-deoxythymidine, respectively, and significant decreases in glucuronidation activity were observed for both substrates in HuH-7 and Hep3B cells upon overexpression of miR-485-5p mimic. This is the first study demonstrating a regulatory role of miR-485-5p for multiple UGT2B enzymes. SIGNIFICANCE STATEMENT: The purpose of this study was to identify novel epigenetic miRNA regulators of the UGT2B drug-metabolizing enzymes in healthy human liver samples. Our results indicate that miRNA 485-5p is a novel regulator of UGT2B7 and UGT2B10, which play an important role in the metabolism of many commonly prescribed medications, carcinogens, and endogenous compounds. This study identified potential miRNA-UGT2B mRNA interactions using a novel proteomic approach, with in vitro experiments undertaken to validate these interactions.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Hígado/metabolismo , MicroARNs/metabolismo , Glucuronosiltransferasa/genética , Células HEK293 , Humanos , MicroARNs/genética , Proteómica/métodos
17.
Chem Res Toxicol ; 32(8): 1689-1698, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31307193

RESUMEN

Tobacco specific nitrosamines (TSNAs) are among the most potent carcinogens found in cigarettes and smokeless tobacco products. Decreases in TSNA detoxification, particularly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have been associated with tobacco-related cancer incidence. NNK is metabolized by carbonyl reduction to its major carcinogenic metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is detoxified by glucuronidation at the nitrogen within the pyridine ring or at the chiral alcohol to form four glucuronide products: (R)-NNAL-O-Gluc, (S)-NNAL-O-Gluc, (R)-NNAL-N-Gluc, (S)-NNAL-N-Gluc. Stereoselective NNAL-Gluc formation and the relative expression of NNAL-glucuronidating UGTs (1A4, 1A9, 1A10, 2B7, 2B10, 2B17) were analyzed in 39 tissue specimens from the upper aerodigestive tract (esophagus (n = 13), floor of mouth (n = 4), larynx (n = 9), tongue (n = 7), and tonsil (n = 6)). All pooled tissue types preferentially formed (R)-NNAL-O-Gluc in the presence of racemic-NNAL; only esophagus exhibited any detectable formation of (S)-NNAL-O-Gluc. For every tissue type examined, UGT1A10 exhibited the highest relative expression levels among the NNAL-O-glucuronidating UGTs, ranging from 36% (tonsil) to 49% (esophagus), followed by UGT1A9 > UGT2B7 > UGT2B17. UGT1A10 also exhibited similar or higher levels of expression as compared to both NNAL-N-glucuronidating UGTs, 1A4 and 2B10. In a screening of cells expressing individual UGT enzymes, all NNAL glucuronidating UGTs exhibited some level of stereospecific preference for individual NNAL enantiomers, with UGTs 1A10 and 2B17 forming primarily (R)-NNAL-O-Gluc. These data suggest that UGTs 1A10 and 2B17 may be important enzymes in the detoxification of TSNAs like NNK in tissues of the upper aerodigestive tract.


Asunto(s)
Sistema Digestivo/metabolismo , Glucurónidos/metabolismo , Nitrosaminas/metabolismo , Sistema Digestivo/química , Glucurónidos/química , Glucuronosiltransferasa/metabolismo , Células HEK293 , Humanos , Cinética , Estructura Molecular , Nitrosaminas/química , Estereoisomerismo
18.
J Pharmacol Exp Ther ; 369(2): 234-243, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30850392

RESUMEN

UDP-glucuronosyltransferase (UGT) 2A1 is an important enzyme in the detoxification of polycyclic aromatic hydrocarbons found in cigarette smoke. This enzyme is expressed in aerodigestive tract tissues including lung as both its wild-type and exon 4-deleted splice variant isoforms, with the latter acting as a negative regulator of wild-type UGT2A1 activity. UGT2A1 regulation may also be mediated by microRNA (miRNA). To identify miRNA important in the regulation of UGT2A1, expression analysis in tandem with in silico analysis suggested miR-196a-5p and miR-196b-5p as potential top candidates. Significant reductions in firefly luciferase activity were observed in human embryonic kidney cell line 293 cells cotransfected with the wild-type UGT2A1 3'-untranslated region (UTR)-containing luciferase plasmid and either miR-196a-5p (62%, P = 0.00080) or miR-196b-5p (60%, P = 0.00030) mimics. In pull-down assays, there was a 3.4- and 5.2-fold increase in miR-196a-5p (P = 0.054) and miR-196b-5p (P = 0.035), respectively, using the UGT2A1 3'-UTR biotinylated mRNA probe as compared with the ß-actin coding region control mRNA probe. UGT2A1 mRNA was reduced by 25% (P = 0.058) and 35% (P = 0.023) in H146 and H1944 cells, respectively, after overexpression of the miR196a-5p mimic. A similar 32% (P = 0.030) and 41% (P = 0.016) reduction was observed after over-expression of the miR-196b-5p mimic. In H146 cells transfected with miRNA mimic together with a small interfering RNA (siRNA) specific for the UGT2A1 splice variant, a significant reduction in 3-hydroxy-benzo[a]pyrene-glucuronide formation was observed. The miR-196a-5p- and miR-196b-55p-treated cells exhibited reductions of 35% (P = 0.047) and 44% (P = 0.0063), respectively. These data suggest that miR-196a-5p and miR-196b-5p play an important role in UGT2A1 regulation within the lung and potentially other aerodigestive tract tissues.


Asunto(s)
Glucuronosiltransferasa/genética , MicroARNs/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/genética , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos
19.
Drug Metab Dispos ; 47(5): 535-544, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30804050

RESUMEN

Integrase strand transfer inhibitor (INSTI)-based regimens dominate initial human immunodeficiency virus treatment. Most INSTIs are metabolized predominantly via UDP-glucuronosyltransferases (UGTs). For drugs predominantly metabolized by UGTs, including INSTIs, in vitro data recovered from human liver microsomes (HLMs) alone often underpredict human oral clearance. While several factors may contribute, extrahepatic glucuronidation may contribute to this underprediction. Thus, we comprehensively characterized the kinetics for the glucuronidation of INSTIs (cabotegravir, dolutegravir, and raltegravir) using pooled human microsomal preparations from liver (HLMs), intestine (HIMs), and kidney (HKMs) tissues; human embryonic kidney 293 cells expressing individual UGTs; and recombinant UGTs. In vitro glucuronidation of cabotegravir (HLMs≈HKMs>>>HIMs), dolutegravir (HLMs>HIMs>>HKMs), and raltegravir (HLMs>HKMs>> HIMs) occurred in hepatic and extrahepatic tissues. The kinetic data from expression systems suggested the major enzymes in each tissue: hepatic UGT1A9 > UGT1A1 (dolutegravir and raltegravir) and UGT1A1 (cabotegravir), intestinal UGT1A3 > UGT1A8 > UGT1A1 (dolutegravir) and UGT1A8 > UGT1A1 (raltegravir), and renal UGT1A9 (dolutegravir and raltegravir). Enzymes catalyzing cabotegravir glucuronidation in the kidney and intestine could not be identified unequivocally. Using data from dolutegravir glucuronidation as a prototype, a "bottom-up" physiologically based pharmacokinetic model was developed in a stepwise approach and predicted dolutegravir oral clearance within 4.5-fold (hepatic data only), 2-fold (hepatic and intestinal data), and 32% (hepatic, intestinal, and renal data). These results suggest clinically meaningful glucuronidation of dolutegravir in tissues other than the liver. Incorporation of additional novel mechanistic and physiologic underpinnings of dolutegravir metabolism along with in silico approaches appears to be a powerful tool to accurately predict the clearance of dolutegravir from in vitro data.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Integrasas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular , Niño , Preescolar , Femenino , Células HEK293 , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Cinética , Hígado/metabolismo , Masculino , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Oxazinas , Piperazinas , Piridonas/metabolismo , Raltegravir Potásico/metabolismo , Adulto Joven
20.
Cancer Epidemiol Biomarkers Prev ; 28(2): 311-320, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381441

RESUMEN

BACKGROUND: The major mode of metabolism of nicotine is by hydroxylation via cytochrome P450 (CYP) 2A6, but it can also undergo glucuronidation by UDP-glucuronosyltransferases and oxidation by flavin monooxygenases (FMO). The goal of this study was to examine the potential importance of FMOs in nicotine metabolism and assess the potential impact of missense polymorphisms in active FMOs on nicotine-N'-oxide (NOX) formation. METHODS: Urine samples from 106 current Chinese smokers were analyzed for nicotine metabolites by mass spectrometry. Wild-type FMOs 1-5 and their most prevalent nonsynonymous variants were cloned and overexpressed in HEK293 cells, and were tested in oxidation reactions against nicotine. RESULTS: A strong inverse correlation was observed between the ratio of urinary 3'-hydroxycotinine/cotinine, a measure of CYP2A6 activity, and the urinary levels of NOX alone (r = -0.383; P < 0.001) or NOX measured as a ratio of total nicotine metabolites (r = -0.414; P < 0.001) in smokers. In addition to FMO1 and FMO3, the functional FMO2427Q isoform was active against nicotine, whereas FMO4 and FMO5 exhibited low activity against nicotine (K m > 5.0 mmol/L). Significant (P < 0.05) decreases in N'-oxidation activity (V max/K m) were observed for the FMO1I303V, FMO3N61S, FMO3D132H, FMO3V257M, and FMO3E308G variants in vitro when compared with their respective wild-type isoforms; the truncated FMO2Q472stop isoform exhibited no enzyme activity. CONCLUSIONS: These data indicate that increases in nicotine-N'-oxidation occur in subjects with deficient CYP2A6 activity, and that several FMO enzymes are active in nicotine-N'-oxidation. IMPACT: Several common missense FMO variants are associated with altered enzyme activity against nicotine and may play an important role in nicotine metabolism in low-CYP2A6 activity subjects.


Asunto(s)
Inactivación Metabólica , Nicotina/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Polimorfismo Genético , Cotinina/análogos & derivados , Cotinina/metabolismo , Cotinina/orina , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/orina , Citocromo P-450 CYP2A6/metabolismo , Células HEK293 , Humanos , Nicotina/análogos & derivados , Nicotina/orina , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...