Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 4(1): 160804, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28280582

RESUMEN

Identifying leader-follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader-follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader-follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader-follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader-follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups.

2.
Biol Lett ; 12(9)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27624797

RESUMEN

In animal groups where certain individuals have disproportionate influence over collective decisions, the whole group's performance may suffer if these individuals possess inaccurate information. Whether in such situations leaders can be replaced in their roles by better-informed group mates represents an important question in understanding the adaptive consequences of collective decision-making. Here, we use a clock-shifting procedure to predictably manipulate the directional error in navigational information possessed by established leaders within hierarchically structured flocks of homing pigeons (Columba livia). We demonstrate that in the majority of cases when leaders hold inaccurate information they lose their influence over the flock. In these cases, inaccurate information is filtered out through the rearrangement of hierarchical positions, preventing errors by former leaders from propagating down the hierarchy. Our study demonstrates that flexible decision-making structures can be valuable in situations where 'bad' information is introduced by otherwise influential individuals.


Asunto(s)
Columbidae/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Navegación Espacial/fisiología , Animales , Relojes Biológicos , Toma de Decisiones , Vuelo Animal/fisiología , Liderazgo , Luz , Predominio Social
3.
R Soc Open Sci ; 3(1): 150518, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26909176

RESUMEN

In societies that make collective decisions through leadership, a fundamental question concerns the individual attributes that allow certain group members to assume leadership roles over others. Homing pigeons form transitive leadership hierarchies during flock flights, where flock members are ranked according to the average time differences with which they lead or follow others' movement. Here, we test systematically whether leadership ranks in navigational hierarchies are correlated with prior experience of a homing task. We constructed experimental flocks of pigeons with mixed navigational experience: half of the birds within each flock had been familiarized with a specific release site through multiple previous releases, while the other half had never been released from the same site. We measured the birds' hierarchical leadership ranks, then switched the same birds' roles at a second site to test whether the relative hierarchical positions of the birds in the two subsets would reverse in response to the reversal in levels of experience. We found that while across all releases the top hierarchical positions were occupied by experienced birds significantly more often than by inexperienced ones, the remaining experienced birds were not consistently clustered in the top half-in other words, the network did not become stratified. We discuss our results in light of the adaptive value of structuring leadership hierarchies according to 'merit' (here, navigational experience).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA