Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 119(1): 59-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36420630

RESUMEN

The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iß-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iß-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.


Asunto(s)
Escherichia coli , Vibrio vulnificus , Escherichia coli/metabolismo , Vibrio vulnificus/metabolismo , Hemo/metabolismo , Proteínas Portadoras/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo
2.
J Bacteriol ; 204(9): e0022522, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35916529

RESUMEN

The Aer2 chemoreceptor from Pseudomonas aeruginosa is an O2 sensor involved in stress responses, virulence, and tuning the behavior of the chemotaxis (Che) system. Aer2 is the sole receptor of the Che2 system. It is soluble, but membrane associated, and forms complexes at the cell pole during stationary phase. The domain arrangement of Aer2 is unusual, with a PAS sensing domain sandwiched between five HAMP domains, followed by a C-terminal kinase-control output domain. The first three HAMP domains form a poly-HAMP chain N-terminal to the PAS sensing domain. HAMP domains are often located between signal input and output domains, where they transduce signals. Given that HAMP1 to 3 reside N-terminal to the input-output pathway, we undertook a systematic examination of their function in Aer2. We found that HAMP1 to 3 influence PAS signaling over a considerable distance, as the majority of HAMP1, 2 and 3 mutations, and deletions of helical phase stutters, led to nonresponsive signal-off or off-biased receptors. PAS signal-on lesions that mimic activated Aer2 also failed to override N-terminal HAMP signal-off replacements. This indicates that HAMP1 to 3 are critical coupling partners for PAS signaling and likely function as a cohesive unit and moveable scaffold to correctly orient and poise PAS dimers for O2-mediated signaling in Aer2. HAMP1 additionally controlled the clustering and polar localization of Aer2 in P. aeruginosa. Localization was not driven by HAMP1 charge, and HAMP1 signal-off mutants still localized. Employing HAMP as a clustering and localization determinant, as well as a facilitator of PAS signaling, are newly recognized roles for HAMP domains. IMPORTANCE P. aeruginosa is an opportunistic pathogen that interprets environmental stimuli via 26 chemoreceptors that signal through 4 distinct chemosensory systems. The second chemosensory system, Che2, contains a receptor named Aer2 that senses O2 and mediates stress responses and virulence and tunes chemotactic behavior. Aer2 is membrane associated, but soluble, and has three N-terminal HAMP domains (HAMP1 to 3) that reside outside the signal input-output pathway of Aer2. In this study, we determined that HAMP1 to 3 facilitate O2-dependent signaling from the PAS sensing domain and that HAMP1 controls the formation of Aer2-containing polar foci in P. aeruginosa. Both of these are newly recognized roles for HAMP domains that may be applicable to other non-signal-transducing HAMP domains and poly-HAMP chains.


Asunto(s)
Quimiotaxis , Pseudomonas aeruginosa , Proteínas Portadoras/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal
3.
J Bacteriol ; 204(4): e0056721, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311542

RESUMEN

In this study, we provide the first characterization of a chemoreceptor from Leptospira interrogans, the cause of leptospirosis. This receptor is related to the Aer2 receptors that have been studied in other bacteria. In those organisms, Aer2 is a soluble receptor with one or two PAS-heme domains and signals in response to O2 binding. In contrast, L. interrogans Aer2 (LiAer2) is an unusual membrane-bound Aer2 with a periplasmic domain and three cytoplasmic PAS-heme domains. Each of the three PAS domains bound b-type heme via conserved Eη-His residues. They also bound O2 and CO with similar affinities to each other and other PAS-heme domains. However, all three PAS domains were uniquely hexacoordinate in the deoxy-heme state, whereas other Aer2-PAS domains are pentacoordinate. Similar to other Aer2 receptors, LiAer2 could hijack the E. coli chemotaxis pathway but only when it was expressed with an E. coli high-abundance chemoreceptor. Unexpectedly, the response was inverted relative to classic Aer2 receptors. That is, LiAer2 caused E. coli to tumble (it was signal-on) in the absence of O2 and to stop tumbling in its presence. Thus, an endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2, and its displacement for gas-binding turned signaling off. This response also occurred in a soluble version of LiAer2 lacking the periplasmic domain, transmembrane (TM) region, and first two PAS domains, meaning that PAS3 alone was sufficient for O2-mediated control. Future studies are needed to understand the unique signaling mechanisms of this unusual Aer2 receptor. IMPORTANCE Leptospira interrogans, the cause of the zoonotic infection leptospirosis, is found in soil and water contaminated with animal urine. L. interrogans survives in complex environments with the aid of 12 chemoreceptors, none of which has been explicitly studied. In this study, we characterized the first L. interrogans chemoreceptor, LiAer2, and reported its unique characteristics. LiAer2 is membrane-bound, has three cytoplasmic PAS-heme domains that each bound hexacoordinate b-type heme and O2 turned LiAer2 signaling off. An endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2 and its displacement for O2-binding turned signaling off. Our study corroborated previous findings that Aer2 receptors are O2 sensors, but also demonstrated that they do not all function the same way.


Asunto(s)
Leptospira interrogans , Leptospirosis , Animales , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Hemo/metabolismo , Leptospira interrogans/genética , Ligandos , Oxígeno/metabolismo
4.
Biochemistry ; 60(34): 2610-2622, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34383467

RESUMEN

The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Proteínas de Unión al Hemo/química , Hemo/metabolismo , Oxígeno/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al Hemo/metabolismo , Modelos Moleculares , Dominios Proteicos , Estructura Terciaria de Proteína , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/aislamiento & purificación , Transducción de Señal , Relación Estructura-Actividad , Sistemas de Secreción Tipo III/metabolismo
5.
Curr Opin Microbiol ; 61: 8-15, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33647528

RESUMEN

PAS domains are widespread, versatile domains found in proteins from all kingdoms of life. The PAS fold is composed of an antiparallel ß-sheet with several flanking α-helices, and contains a conserved cleft for cofactor or ligand binding. The last few years have seen a prodigious increase in identified PAS domains and resolved PAS structures, including structures with effector and other domains. New bacterial PAS ligands have been discovered, and structure-function studies have improved our understanding of PAS signaling mechanisms. The list of bacterial PAS functions has now expanded to include roles in signal sensing, modulation, transduction, dimerization, protein interaction, and cellular localization.


Asunto(s)
Proteínas Bacterianas , Transducción de Señal , Bacterias/genética , Proteínas Bacterianas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
6.
Mol Microbiol ; 115(2): 222-237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32979856

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that senses and responds to its environment via four chemosensory systems. Oxygen activates the Che2 chemosensory system by binding to the PAS-heme domain of the Aer2 receptor. Ostensibly, the output of Che2 occurs via its response regulator CheY2, but controversy persists over CheY2's exact role. In this study, we show that CheY2 does not interact with the flagellar motor and that the Che2 system does not transfer phosphoryl groups to the chemotaxis (Che) system. We show that CheY2 instead provides feedback control of Aer2 adaptation. In the presence of O2 , Aer2 signaling increases the autophosphorylation of the histidine kinase CheA2, followed by CheY2-mediated dephosphorylation. CheY2 does not stably retain phosphate and may not signal the output of the Che2 system. Rather, CheY2 activity enhances the direct interaction of CheY2 with the adaptation protein CheD (a role often facilitated by CheC, which P. aeruginosa lacks). In the absence of O2 , Aer2 does not signal, and CheY2/CheD interactions attenuate. This frees CheD to augment CheR2-mediated methylation of Aer2, which enhances Aer2 signaling. CheD does not interact with CheR2, but most likely interacts with Aer2 via conserved CheD-binding motifs to make Aer2 a better methylation substrate.


Asunto(s)
Quimiotaxis/fisiología , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Histidina Quinasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Fosforilación , Transducción de Señal/fisiología
7.
Nat Commun ; 11(1): 2041, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341341

RESUMEN

How complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway. Using bioinformatics, we trace the evolution of the system through γ-Proteobacteria, pinpointing key evolutionary events that led to the machine now seen in E. coli. Our results suggest that two ancient chemosensory systems with different inputs and outputs (F6 and F7) existed contemporaneously, with one (F7) ultimately taking over the inputs and outputs of the other (F6), which was subsequently lost.


Asunto(s)
Sustancias Macromoleculares/química , Methylococcaceae/fisiología , Pseudomonas aeruginosa/fisiología , Shewanella/fisiología , Vibrio cholerae/fisiología , Evolución Biológica , Quimiotaxis , Biología Computacional , Tomografía con Microscopio Electrónico , Escherichia coli/fisiología , Proteínas de Escherichia coli , Flagelos/fisiología , Gammaproteobacteria/fisiología , Genoma Bacteriano , Proteínas Quimiotácticas Aceptoras de Metilo/química , Filogenia
8.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358610

RESUMEN

Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.


Asunto(s)
Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Adhesión Bacteriana , Congresos como Asunto , Flagelos/fisiología , Locomoción , Transducción de Señal
9.
Mol Microbiol ; 109(2): 209-224, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29719085

RESUMEN

The diarrheal pathogen Vibrio cholerae navigates complex environments using three chemosensory systems and 44-45 chemoreceptors. Chemosensory cluster II modulates chemotaxis, whereas clusters I and III have unknown functions. Ligands have been identified for only five V. cholerae chemoreceptors. Here, we report that the cluster III receptor, VcAer2, binds and responds to O2 . VcAer2 is an ortholog of Pseudomonas aeruginosa Aer2 (PaAer2) but differs in that VcAer2 has two, rather than one, N-terminal PAS domain. We have determined that both PAS1 and PAS2 form homodimers and bind penta-coordinate b-type heme via an Eη-His residue. Heme binding to PAS1 required the entire PAS core, but receptor function also required the N-terminal cap. PAS2 functioned as an O2 -sensor [ K d( O 2 ) , 19 µM], utilizing the same Iß Trp (W276) as PaAer2 to stabilize O2 . The crystal structure of PAS2-W276L was similar to that of PaAer2-PAS but resided in an active conformation mimicking the ligand-bound state, consistent with its signal-on phenotype. PAS1 also bound O2 [ K d( O 2 ) , 12 µM], although O2 binding was stabilized by either a Trp residue or Tyr residue. Moreover, PAS1 appeared to function as a signal modulator, regulating O2 -mediated signaling from PAS2 and resulting in activation of the cluster III chemosensory pathway.

10.
Methods Mol Biol ; 1729: 137-145, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29429089

RESUMEN

The instability of some proteins can hamper in vitro studies. This is true for the membrane-bound aerotaxis receptor, Aer, which exhibits significant proteolysis during the preparation of membrane vesicles. Permeabilized cells can closely mimic in vivo conditions, maintaining the intracellular milieu and geometry of interacting domains. Here, we describe an optimized method for determining solvent accessibility in permeabilized Escherichia coli cells. In this method, E. coli expressing Aer with a series of cysteine replacements are treated with toluene and ethanol, after which a large sulfhydryl reactive probe, PEG-mal, is added. PEGylated protein is separated from un-PEGylated protein by its apparent size difference on SDS-PAGE. The extent to which each cysteine residue becomes PEGylated is then used as a measure of solvent accessibility. When a library of single-Cys replacements is mapped, regions of low accessibility can suggest interacting protein surfaces. We successfully used this method to reveal inaccessible surfaces on both the Aer PAS and HAMP domains that were then shown by disulfide cross-linking to interact.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/fisiología , Polietilenglicoles/química , Solventes/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Quimiotaxis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Modelos Moleculares , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Serina/química
11.
J Bacteriol ; 199(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167524

RESUMEN

The Aer2 chemoreceptor from Pseudomonas aeruginosa contains a PAS sensing domain that coordinates b-type heme and signals in response to the binding of O2, CO, or NO. PAS-heme structures suggest that Aer2 uniquely coordinates heme via a His residue on a 310 helix (H234 on Eη), stabilizes O2 binding via a Trp residue (W283), and signals via both W283 and an adjacent Leu residue (L264). Ligand binding may displace L264 and reorient W283 for hydrogen bonding to the ligand. Here, we clarified the mechanisms by which Aer2-PAS binds heme, regulates ligand binding, and initiates conformational signaling. H234 coordinated heme, but additional hydrophobic residues in the heme cleft were also critical for stable heme binding. O2 appeared to be the native Aer2 ligand (dissociation constant [Kd ] of 16 µM). With one exception, mutants that bound O2 could signal, whereas many mutants that bound CO could not. W283 stabilized O2 binding but not CO binding, and it was required for signal initiation; W283 mutants that could not stabilize O2 were rapidly oxidized to Fe(III). W283F was the only Trp mutant that bound O2 with wild-type affinity. The size and nature of residue 264 was important for gas binding and signaling: L264W blocked O2 binding, L264A and L264G caused O2-mediated oxidation, and L264K formed a hexacoordinate heme. Our data suggest that when O2 binds to Aer2, L264 moves concomitantly with W283 to initiate the conformational signal. The signal then propagates from the PAS domain to regulate the C-terminal HAMP and kinase control domains, ultimately modulating a cellular response.IMPORTANCEPseudomonas aeruginosa is a ubiquitous environmental bacterium and opportunistic pathogen that infects multiple body sites, including the lungs of cystic fibrosis patients. P. aeruginosa senses and responds to its environment via four chemosensory systems. Three of these systems regulate biofilm formation, twitching motility, and chemotaxis. The role of the fourth system, Che2, is unclear but has been implicated in virulence. The Che2 system contains a chemoreceptor called Aer2, which contains a PAS sensing domain that binds heme and senses oxygen. Here, we show that Aer2 uses unprecedented mechanisms to bind O2 and initiate signaling. These studies provide both the first functional corroboration of the Aer2-PAS signaling mechanism previously proposed from structure as well as a signaling model for Aer2-PAS receptors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Proteínas Bacterianas/química , Monóxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al Hemo , Hemoproteínas/química , Óxido Nítrico/metabolismo , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/genética , Estrés Fisiológico
12.
Mol Microbiol ; 100(1): 156-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26713609

RESUMEN

The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS ß-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Aminoácidos , Sitios de Unión , Disulfuros/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
13.
Biochemistry ; 54(22): 3454-68, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25967982

RESUMEN

Bacterial chemoreceptors associate with the histidine kinase CheA and coupling protein CheW to form extended membrane arrays that receive and transduce environmental signals. A receptor trimers-of-dimers resides at each vertex of the hexagonal protein lattice. CheA is fully activated and regulated when it is integrated into the receptor assembly. To mimic these states in solution, we have engineered chemoreceptor cytoplasmic kinase-control modules (KCMs) based on the Escherichia coli aspartate receptor Tar that are covalently fused and trimerized by a foldon domain (Tar(FO)). Small-angle X-ray scattering, multi-angle light scattering, and pulsed-dipolar electron spin resonance spectroscopy of spin-labeled proteins indicate that the Tar(FO) modules assemble into homogeneous trimers wherein the protein interaction regions closely associate at the end opposite to the foldon domains. The Tar(FO) variants greatly increase the saturation levels of phosphorylated CheA (CheA-P), indicating that the association with a trimer of receptor dimers changes the fraction of active kinase. However, the rate constants for CheA-P formation with the Tar variants are low compared to those for autophosphorylation by free CheA, and net phosphotransfer from CheA to CheY does not increase commensurately with CheA autophosphorylation. Thus, the Tar variants facilitate slow conversion to an active form of CheA that then undergoes stable autophosphorylation and is capable of subsequent phosphotransfer to CheY. Free CheA is largely incapable of phosphorylation but contains a small active fraction. Addition of Tar(FO) to CheA promotes a planar conformation of the regulatory domains consistent with array models for the assembly state of the ternary complex and different from that observed with a single inhibitory receptor. Introduction of Tar(FO) into E. coli cells activates endogenous CheA to produce increased clockwise flagellar rotation, with the effects increasing in the presence of the chemotaxis methylation system (CheB/CheR). Overall, the Tar(FO) modules demonstrate that trimerized signaling tips self-associate, bind CheA and CheW, and facilitate conversion of CheA to an active conformation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de la Membrana/química , Multimerización de Proteína , Receptores de Superficie Celular/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
14.
PLoS Biol ; 11(2): e1001479, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23424282

RESUMEN

HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.


Asunto(s)
Proteínas Bacterianas/química , Células Quimiorreceptoras/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
15.
J Mol Biol ; 425(5): 886-901, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23274111

RESUMEN

Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and EcDOS but propagate to the Iß strand in a manner predicted to alter PAS-PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS-HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Escherichia coli/química , Hemo/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Sistemas de Secreción Tipo III
16.
J Bacteriol ; 193(16): 4095-103, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21665965

RESUMEN

HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2' helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2' helices, which may be the signal that is transmitted to the kinase control region of Aer.


Asunto(s)
Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Transducción de Señal/fisiología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Archaeoglobus fulgidus/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína
17.
Mol Microbiol ; 79(3): 686-99, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21255112

RESUMEN

Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.


Asunto(s)
Proteínas Bacterianas/química , Hemo/metabolismo , Transducción de Señal , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Monóxido de Carbono/farmacología , Quimiotaxis/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Óxido Nítrico/farmacología , Oxígeno/farmacología , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Solubilidad/efectos de los fármacos
18.
J Bacteriol ; 193(2): 358-66, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097634

RESUMEN

In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Sustitución de Aminoácidos/genética , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Proteínas de Escherichia coli/genética , Péptidos y Proteínas de Señalización Intercelular , Modelos Biológicos , Modelos Moleculares , Mutagénesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
20.
Mol Microbiol ; 77(3): 575-86, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545849

RESUMEN

The Aer receptor monitors internal energy (redox) levels in Escherichia coli with an FAD-containing PAS domain. Here, we randomly mutagenized the region encoding residues 14-119 of the PAS domain and found 72 aerotaxis-defective mutants, 24 of which were gain-of-function, signal-on mutants. The mutations were mapped onto an Aer homology model based on the structure of the PAS-FAD domain in NifL from Azotobacter vinlandii. Signal-on lesions clustered in the FAD binding pocket, the beta-scaffolding and in the N-cap loop. We suggest that the signal-on lesions mimic the 'signal-on' state of the PAS domain, and therefore may be markers for the signal-in and signal-out regions of this domain. We propose that the reduction of FAD rearranges the FAD binding pocket in a way that repositions the beta-scaffolding and the N-cap loop. The resulting conformational changes are likely to be conveyed directly to the HAMP domain, and on to the kinase control module. In support of this hypothesis, we demonstrated disulphide band formation between cysteines substituted at residues N98C or I114C in the PAS beta-scaffold and residue Q248C in the HAMP AS-2 helix.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutación , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleótido/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA