Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
2.
Nature ; 621(7977): 162-170, 2023 Sep.
Article En | MEDLINE | ID: mdl-37587342

Certain bacterial strains from the microbiome induce a potent, antigen-specific T cell response1-5. However, the specificity of microbiome-induced T cells has not been explored at the strain level across the gut community. Here, we colonize germ-free mice with complex defined communities (roughly 100 bacterial strains) and profile T cell responses to each strain. The pattern of responses suggests that many T cells in the gut repertoire recognize several bacterial strains from the community. We constructed T cell hybridomas from 92 T cell receptor (TCR) clonotypes; by screening every strain in the community against each hybridoma, we find that nearly all the bacteria-specific TCRs show a one-to-many TCR-to-strain relationship, including 13 abundant TCR clonotypes that each recognize 18 Firmicutes. By screening three pooled bacterial genomic libraries, we discover that these 13 clonotypes share a single target: a conserved substrate-binding protein from an ATP-binding cassette transport system. Peripheral regulatory T cells and T helper 17 cells specific for an epitope from this protein are abundant in community-colonized and specific pathogen-free mice. Our work reveals that T cell recognition of commensals is focused on widely conserved, highly expressed cell-surface antigens, opening the door to new therapeutic strategies in which colonist-specific immune responses are rationally altered or redirected.


Bacteria , Gastrointestinal Microbiome , T-Lymphocytes , Animals , Mice , Antigens, Surface/immunology , Bacteria/classification , Bacteria/immunology , Firmicutes/immunology , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , T-Lymphocytes/immunology , Symbiosis/immunology , Germ-Free Life , Receptors, Antigen, T-Cell/immunology , Hybridomas/cytology , Hybridomas/immunology , Cell Separation
3.
Cell ; 186(16): 3400-3413.e20, 2023 08 03.
Article En | MEDLINE | ID: mdl-37541197

Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here, we identify a widely distributed bacterial gene cluster that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids. Ablation of the microbiota in uricase-deficient mice causes severe hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.


Gout , Hominidae , Hyperuricemia , Adult , Animals , Humans , Mice , Gout/genetics , Gout/metabolism , Hominidae/genetics , Hyperuricemia/genetics , Mammals/metabolism , Urate Oxidase/genetics , Uric Acid/metabolism , Evolution, Molecular
4.
Nat Commun ; 14(1): 3510, 2023 06 14.
Article En | MEDLINE | ID: mdl-37316519

Microbial community function depends on both taxonomic composition and spatial organization. While composition of the human gut microbiome has been deeply characterized, less is known about the organization of microbes between regions such as lumen and mucosa and the microbial genes regulating this organization. Using a defined 117 strain community for which we generate high-quality genome assemblies, we model mucosa/lumen organization with in vitro cultures incorporating mucin hydrogel carriers as surfaces for bacterial attachment. Metagenomic tracking of carrier cultures reveals increased diversity and strain-specific spatial organization, with distinct strains enriched on carriers versus liquid supernatant, mirroring mucosa/lumen enrichment in vivo. A comprehensive search for microbial genes associated with this spatial organization identifies candidates with known adhesion-related functions, as well as novel links. These findings demonstrate that carrier cultures of defined communities effectively recapitulate fundamental aspects of gut spatial organization, enabling identification of key microbial strains and genes.


Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Hydrogels , Metagenome , Microbiota/genetics , Mucins
5.
Cell ; 186(13): 2839-2852.e21, 2023 06 22.
Article En | MEDLINE | ID: mdl-37352836

The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.


Gastrointestinal Microbiome , Bile Acids and Salts , Clostridiales
6.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Article En | MEDLINE | ID: mdl-36070752

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli , Feces , Gastrointestinal Microbiome/genetics , Germ-Free Life , Humans , Mice
7.
Sci Rep ; 12(1): 226, 2022 01 07.
Article En | MEDLINE | ID: mdl-34996998

Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10-9 (95% confidence interval, 2.06 × 10-10-2.91 × 10-9) and 1.36 × 10-9 (95% confidence interval, 4.42 × 10-10-3.18 × 10-9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.


Anopheles/genetics , Mosquito Vectors/genetics , Animals , Female , Humans , Insect Proteins/genetics , Malaria/transmission , Male , Mutation Rate , Whole Genome Sequencing
8.
Cell Rep ; 37(5): 109930, 2021 11 02.
Article En | MEDLINE | ID: mdl-34731631

Mechanistic insights into the role of the human microbiome in the predisposition to and treatment of disease are limited by the lack of methods to precisely add or remove microbial strains or genes from complex communities. Here, we demonstrate that engineered bacteriophage M13 can be used to deliver DNA to Escherichia coli within the mouse gastrointestinal (GI) tract. Delivery of a programmable exogenous CRISPR-Cas9 system enables the strain-specific depletion of fluorescently marked isogenic strains during competitive colonization and genomic deletions that encompass the target gene in mice colonized with a single strain. Multiple mechanisms allow E. coli to escape targeting, including loss of the CRISPR array or even the entire CRISPR-Cas9 system. These results provide a robust and experimentally tractable platform for microbiome editing, a foundation for the refinement of this approach to increase targeting efficiency, and a proof of concept for the extension to other phage-bacterial pairs of interest.


Bacteriophage M13/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Chromosome Deletion , Chromosomes, Bacterial , Clustered Regularly Interspaced Short Palindromic Repeats , Escherichia coli/genetics , Gastrointestinal Microbiome , Gene Editing , Animals , CRISPR-Associated Protein 9/metabolism , Escherichia coli/growth & development , Feces/microbiology , Female , Gene Expression Regulation, Bacterial , Mice, Inbred BALB C , Mice, Transgenic , Proof of Concept Study
10.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Article En | MEDLINE | ID: mdl-32265562

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Aedes/microbiology , Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/physiology , Wolbachia/physiology , Aedes/growth & development , Animal Migration , Animals , California , Female , Larva/growth & development , Larva/microbiology , Larva/physiology , Male , Mosquito Control/statistics & numerical data , Mosquito Vectors/growth & development , Population Dynamics , Sex Characteristics
11.
F1000Res ; 8: 1431, 2019.
Article En | MEDLINE | ID: mdl-31497292

Sample storage for downstream RNA analysis can be challenging in some field settings, especially where access to cryogenic materials or refrigeration/freezer facilities are limited. This has limited RNA-based studies on African malaria vectors collected in the field. We evaluated RNA quality after storing mosquito samples in three different sample preservation media over a 4-week period. Storing mosquito specimens in cold (4°C) media significantly improved yields of intact RNA. Our results indicate commercially available products perform well in keeping RNA integrity as advertised. Moreover, absolute ethanol may be an economical alternative for sample preservation that can be utilized in some resource-limited settings.


Culicidae , Ethanol , Preservation, Biological/methods , RNA , Animals , Culicidae/genetics , Mosquito Vectors
12.
Nature ; 563(7732): 501-507, 2018 11.
Article En | MEDLINE | ID: mdl-30429615

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Aedes/genetics , Arbovirus Infections/virology , Arboviruses , Genome, Insect/genetics , Genomics/standards , Insect Control , Mosquito Vectors/genetics , Mosquito Vectors/virology , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/isolation & purification , DNA Copy Number Variations/genetics , Dengue Virus/isolation & purification , Female , Genetic Variation/genetics , Genetics, Population , Glutathione Transferase/genetics , Insecticide Resistance/drug effects , Male , Molecular Sequence Annotation , Multigene Family/genetics , Pyrethrins/pharmacology , Reference Standards , Sex Determination Processes/genetics
13.
PLoS Genet ; 12(9): e1006303, 2016 09.
Article En | MEDLINE | ID: mdl-27631375

Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations.


Anopheles/genetics , Host-Pathogen Interactions/genetics , Insect Vectors/genetics , Malaria/genetics , Africa , Animals , Anopheles/parasitology , Behavior, Animal/physiology , Cattle , Genotype , Humans , Insect Vectors/parasitology , Insecticides/therapeutic use , Malaria/epidemiology , Malaria/parasitology , Malaria/transmission , Mosquito Control , Polymorphism, Single Nucleotide
14.
J Vis Exp ; (96): e52385, 2015 Feb 28.
Article En | MEDLINE | ID: mdl-25867057

The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays.


Anopheles/classification , Anopheles/parasitology , Insect Vectors/classification , Insect Vectors/parasitology , Malaria/transmission , Plasmodium/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Anopheles/genetics , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/methods , Genotyping Techniques/methods , Insect Vectors/genetics , Malaria/parasitology , Plasmodium/genetics , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide
15.
F1000Res ; 3: 243, 2014.
Article En | MEDLINE | ID: mdl-25383188

Presence of Plasmodium falciparum circumsporozoite protein (CSP) was detected by enzyme linked immunosorbent assay (ELISA) in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall) was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%). The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3%, 4.1%, 11.1% and 33.3% respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18) and A. pharoensis (N=6) and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

16.
G3 (Bethesda) ; 4(1): 121-31, 2014 Jan 10.
Article En | MEDLINE | ID: mdl-24281424

Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, Anopheles arabiensis, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the An. arabiensis genome, with ~800,000 high-confidence, single- nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within An. arabiensis decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes.


Anopheles/genetics , Genetic Variation , Genome , Linkage Disequilibrium , Animals , Chromosome Mapping , Female , Gene Frequency , Genetics, Population , Insect Vectors/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
...