Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 15(12): e1805294, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30756524

RESUMEN

Spider silks are desirable materials with mechanical properties superior to most synthetic materials coupled with biodegradability and biocompatibility. In order to replicate natural silk properties using recombinant spider silk proteins (spidroins) and wet-spinning methods, the focus to date has typically been on modifying protein sequence, protein size, and spinning conditions. Here, an alternative approach is demonstrated. Namely, using the same ≈57 kDa recombinant aciniform silk protein with a consistent wet-spinning protocol, fiber mechanical properties are shown to significantly differ as a function of the solvent used to dissolve the protein at high concentration (the "spinning dope" solution). A fluorinated acid/alcohol/water dope leads to drastic improvement in fibrillar extensibility and, correspondingly, toughness compared to fibers produced using a previously developed fluorinated alcohol/water dope. To understand the underlying cause for these mechanical differences, morphology and structure of the two classes of silk fiber are compared, with features tracing back to dope-state protein structuring and preassembly. Specifically, distinct classes of spidroin nanoparticles appear to form in each dope prior to fiber spinning and these preassembled states are, in turn, linked to fiber morphology, structure, and mechanical properties. Tailoring of dope-state spidroin nanoparticle assembly, thus, appears a promising strategy to modulate fibrillar silk properties.


Asunto(s)
Proteínas Recombinantes/química , Seda/química , Animales , Anisotropía , Dispersión Dinámica de Luz , Nanopartículas/química , Estructura Secundaria de Proteína , Espectroscopía de Protones por Resonancia Magnética , Seda/ultraestructura , Solventes/química , Espectrometría Raman , Arañas , Estrés Mecánico , Viscosidad
2.
Biochim Biophys Acta Gen Subj ; 1861(8): 1901-1912, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28546009

RESUMEN

BACKGROUND: Apelin is a peptide ligand for a class A G-protein coupled receptor called the apelin receptor (AR or APJ) that regulates angiogenesis, the adipoinsular axis, and cardiovascular functions. Apelin has been shown to be bioactive as 13, 17, and 36 amino acid isoforms, C-terminal fragments of the putatively inactive 55-residue proprotein (proapelin or apelin-55). Although intracellular proprotein processing has been proposed, isolation of apelin-55 from colostrum and milk demonstrates potential for secretion prior to processing and the possibility of proapelin-AR interaction. METHODS: Apelin isoform activity and potency were compared by an In-Cell Western™ assay for ERK phosphorylation using a stably AR-transfected HEK293A cell line. Conformational comparison of apelin isoforms was carried out by circular dichroism and heteronuclear solution-state nuclear magnetic resonance spectroscopy. RESULTS: Apelin-55 is shown to activate the AR, with similar maximum ERK phophorylation response and potency to the shorter isoforms except for apelin-13, which exhibited a greater potency. Correlating to this shared activity, highly similar conformations are exhibited in all apelin isoforms for the shared C-terminal region responsible for receptor binding and activation. CONCLUSIONS: AR activation by all apelin isoforms likely hinges upon shared conformation and dynamics in the C-terminus, with apelin-55 providing an alternative bioactive isoform despite the addition of 19N-terminal residues relative to apelin-36. GENERAL SIGNIFICANCE: Beyond providing novel insight into the physiology of this system, re-annotation of proapelin to the bioactive apelin-55 isoform adds to the molecular toolkit for dissection of apelin-AR interactions and expands the repertoire of therapeutic targets for the apelinergic system.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Precursores de Proteínas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Apelina , Receptores de Apelina , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Ligandos , Espectroscopía de Resonancia Magnética , Fosforilación , Conformación Proteica , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad
3.
J Phys Chem B ; 121(18): 4768-4777, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28414462

RESUMEN

Bioactive apelin peptide forms ranging in length from 12 to 55 amino acids bind to and activate the apelin receptor (AR or APJ), a class A G-protein coupled receptor. Apelin-12, -17, and -36 isoforms, named according to length, with an additional N-terminal cysteine residue allowed for regiospecific and efficient conjugation of pyrene maleimide. Through steady-state fluorescence spectroscopy, the emission properties of pyrene in aqueous buffer were compared to those of the pyrene-apelin conjugates both without and with zwitterionic or anionic micelles. Pyrene photophysics are consistent with an expected partitioning into the hydrophobic micellar cores, while pyrene-apelin conjugation prevented this partitioning. Apelin, conversely, is expected to preferentially interact with anionic micelles; pyrene-apelin conjugates appear to lose preferential interaction. Finally, Förster resonance energy transfer between pyrene and tryptophan residues in the N-terminal tail and first transmembrane segment (the AR55 construct, comprising residues 1-55 of the AR) was consistent with efficient nonspecific pyrene-apelin conjugate binding to micelles rather than direct, specific apelin-AR55 binding. This approach provides a versatile fluorophore conjugation strategy for apelin, particularly valuable given that even a highly hydrophobic fluorophore is not deleterious to peptide behavior in membrane-mimetic micellar systems.


Asunto(s)
Apelina/química , Micelas , Pirenos/química , Apelina/genética , Apelina/aislamiento & purificación , Transferencia Resonante de Energía de Fluorescencia , Estructura Molecular , Espectrometría de Fluorescencia
4.
Biomacromolecules ; 17(8): 2737-46, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387592

RESUMEN

Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 200 amino acid repeat units was solubilized in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/water mixture, forming a viscous α-helix-enriched spinning dope, and wet-spun into an ethanol/water coagulation bath allowing continuous fiber production. Post-spin stretching of the resulting wet-spun fibers in water significantly improved fiber strength, enriched ß-sheet conformation without complete α-helix depletion, and enhanced birefringence. These methods allow reproducible aciniform silk fiber formation, albeit with lower extensibility than native silk, requiring conditions and methods distinct from those previously reported for other silk proteins. This provides an essential starting point for tailoring wet-spinning of aciniform silk to achieve desired properties.


Asunto(s)
Fibroínas/química , Proteínas Recombinantes/química , Seda/química , Arañas/química , Animales , Fibroínas/ultraestructura , Microscopía de Fuerza Atómica , Seda/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...