Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(10): 107202, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27636490

RESUMEN

The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.

2.
Nat Commun ; 6: 6723, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25872781

RESUMEN

A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

3.
Adv Mater ; 27(12): 2101-6, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25688732

RESUMEN

Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increases with the electrical conductivity. The increase exceeds that predicted by the Wiedemann-Franz law for metals and can be explained by significant electronic thermal transport in PEDOT.

4.
Nat Nanotechnol ; 9(5): 384-90, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681778

RESUMEN

Polymers are usually considered thermal insulators, because the amorphous arrangement of the molecular chains reduces the mean free path of heat-conducting phonons. The most common method to increase thermal conductivity is to draw polymeric fibres, which increases chain alignment and crystallinity, but creates a material that currently has limited thermal applications. Here we show that pure polythiophene nanofibres can have a thermal conductivity up to ∼ 4.4 W m(-1) K(-1) (more than 20 times higher than the bulk polymer value) while remaining amorphous. This enhancement results from significant molecular chain orientation along the fibre axis that is obtained during electropolymerization using nanoscale templates. Thermal conductivity data suggest that, unlike in drawn crystalline fibres, in our fibres the dominant phonon-scattering process at room temperature is still related to structural disorder. Using vertically aligned arrays of nanofibres, we demonstrate effective heat transfer at critical contacts in electronic devices operating under high-power conditions at 200 °C over numerous cycles.

5.
Rev Sci Instrum ; 84(8): 084903, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24007092

RESUMEN

An increasingly used technique for measuring the thermal conductance of a nanowire is based on a suspended micro-device with built-in resistance thermometers. In the past, the technique has been limited to samples with thermal conductance larger than 1 × 10(-9) W/K because of temperature fluctuations in the sample environment and the presence of background heat transfer through residual gas molecules and radiation between the two thermometers. In addition, parasitic heat loss from the long supporting beams and asymmetry in the fabricated device results in two additional errors, which have been ignored in previous use of this method. To address these issues, we present a comprehensive measurement approach, where the device asymmetry is determined by conducting thermal measurements with two opposite heat flow directions along the nanowire, the background heat transfer is eliminated by measuring the differential heat transfer signal between the nanowire device and a reference device without a nanowire sample, and the parasitic heat loss from the supporting beams is obtained by measuring the average temperature rise of one of the beams. This technique is demonstrated on a nanofiber sample with a thermal conductance of 3.7 × 10(-10) W/K, against a background conductance of 8.2 × 10(-10) W/K at 320 K temperature. The results reveal the need to reduce the background thermal conductance in order to employ the micro-device to measure a nanowire sample with the thermal conductance less than 1 × 10(-10) W/K.


Asunto(s)
Microtecnología/instrumentación , Nanocables , Conductividad Térmica , Artefactos , Membranas Artificiales , Suspensiones
6.
Phys Rev Lett ; 108(6): 068103, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401125

RESUMEN

We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object hovering in a vertically oscillating airflow. Such a flyer not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free flight. Flow visualization reveals that both weight support and orientational stability result from the periodic shedding of vortices. We explain these findings with a model of the flight dynamics, predict increasing stability for higher center of mass, and verify this counterintuitive fact by comparing top- and bottom-heavy flyers.


Asunto(s)
Vuelo Animal , Modelos Teóricos , Animales , Biomimética/métodos , Insectos , Modelos Biológicos , Alas de Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA