Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38903904

RESUMEN

The Additive Manufacturing Benchmark Series (AM Bench) is a NIST-led organization that provides a continuing series of additive manufacturing benchmark measurements, challenge problems, and conferences with the primary goal of enabling modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark measurement data. To this end, single-track (1D) and pad (2D) scans on bare plate nickel alloy 718 were completed with thermography, cross-sectional grain orientation and local chemical composition maps, and cross-sectional melt pool size measurements. The laser power, scan speed, and laser spot size were varied for single tracks, and the scan direction was varied for pads. This article focuses on the cross-sectional melt pool size measurements and presents the predictions from challenge problems. Single-track depth correlated with volumetric energy density while width did not (within the studied parameters). The melt pool size for pad scans was greater than single tracks due to heat buildup. Pad scan melt pool depth was reduced when the laser scan direction and gas flow direction were parallel. The melt pool size in pad scans showed little to no trend against position within the pads. Uncertainty budgets for cross-sectional melt pool size from optical micrographs are provided for the purpose of model validation.

2.
Rapid Prototyp J ; 29(8)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38486812

RESUMEN

Purpose: This paper aims to investigate the influence of non-uniform gas speed across the build area on the melt pool depth during laser powder bed fusion. The study focuses on whether a non-uniform gas speed is a source of process variation within an individual build. Design/methodology/approach: Parts with many single-track laser scans were printed and characterized in different locations across the build area coupled with corresponding gas speed profile measurements. Cross-sectional melt pool depth, width, and area are compared against build location/gas speed profiles, scan direction, and laser scan speed. Findings: The study shows that the melt pool depth of single-track laser scans produced on parts are highly variable. Despite this, trends were found showing a reduction in melt pool depth for slow laser scan speeds on the build platform near the inlet nozzle and when the laser scans are parallel to the gas flow direction. Originality/value: A unique dataset of single-track laser scan cross-sectional melt pool measurements and gas speed measurements was generated to assess process variation associated with non-uniform gas speed. Additionally, a novel sample design was used to increase the number of single-track tests per part, which is widely applicable to studying process variation across the build area.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36733901

RESUMEN

Laser powder bed fusion (L-PBF) additive manufacturing (AM) requires the careful selection of laser process parameters for each feedstock material and machine, which is a laborious process. Scaling laws based on the laser power, speed, and spot size; melt pool geometry; and thermophysical properties can potentially reduce this effort by transferring knowledge from one material and/or laser system to another. Laser spot size is one critical parameter that is less well studied for scaling laws compared to laser power and scan speed. Consequently, single track laser scans were generated with a spot size (D4σ) range of 50 µm to 322 µm and melt pool aspect ratio (depth over spot radius) range from 0.1 to 7.0. These were characterized by in-situ thermography, cross-sectioning, and optical microscopy. Scaling laws from literature were applied and evaluated based on melt pool depth predictions. Scaling laws that contain a minimum of three dimensionless parameters and account for changing absorption between conduction and keyhole mode provide the most accurate melt pool depth predictions (< 35 % difference from experiments), which is comparable to thermal simulation results from literature for a select number of cases.

4.
Addit Manuf ; 392021.
Artículo en Inglés | MEDLINE | ID: mdl-34249618

RESUMEN

It is well known that changes in the starting powder can have a significant impact on the laser powder bed fusion process and subsequent part performance. Relationships between the powder particle size distribution and powder performance such as flowability and spreadability are generally known; however, links to part performance are not fully established. This study attempts to more precisely isolate the effect of particle size by using three customized batches of 17-4 PH stainless steel powders with small shifts in particle size distributions having non-intersecting cumulative size distributions, designated as Fine, Medium, and Coarse. It is found that the Fine powder has the worst overall powder performance with poor flow and raking during spreading while the Coarse powder has the best overall flow. Despite these differences in powder performance, the microstructures (i.e., porosity, grain size, phase, and crystallographic texture) of the built parts using the same process parameters are largely the same. Furthermore, the Medium powder produced parts with the highest mechanical properties (i.e., hardness and tensile strength) while the Fine and Coarse powders produced parts with effectively identical mechanical properties. Parts with good static mechanical properties can be produced from powders with a wide range of powder performance.

5.
Mater Des ; 2092021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36937330

RESUMEN

High-throughput experiments that use combinatorial samples with rapid measurements can be used to provide process-structure-property information at reduced time, cost, and effort. Developing these tools and methods is essential in additive manufacturing where new process-structure-property information is required on a frequent basis as advances are made in feedstock materials, additive machines, and post-processing. Here we demonstrate the design and use of combinatorial samples produced on a commercial laser powder bed fusion system to study 60 distinct process conditions of nickel superalloy 625: five laser powers and four laser scan speeds in three different conditions. Combinatorial samples were characterized using optical and electron microscopy, x-ray diffraction, and indentation to estimate the porosity, grain size, crystallographic texture, secondary phase precipitation, and hardness. Indentation and porosity results were compared against a regular sample. The smaller-sized regions (3 mm × 4 mm) in the combinatorial sample have a lower hardness compared to a larger regular sample (20 mm × 20 mm) with similar porosity (< 0.03 %). Despite this difference, meaningful trends were identified with the combinatorial sample for grain size, crystallographic texture, and porosity versus laser power and scan speed as well as trends with hardness versus stress-relief condition.

6.
Sci Rep ; 7(1): 11918, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931874

RESUMEN

We discuss and demonstrate the application of recently developed spherical nanoindentation stress-strain protocols in characterizing the mechanical behavior of tungsten polycrystalline samples with ion-irradiated surfaces. It is demonstrated that a simple variation of the indenter size (radius) can provide valuable insights into heterogeneous characteristics of the radiation-induced-damage zone. We have also studied the effect of irradiation for the different grain orientations in the same sample.

7.
Integr Mater Manuf Innov ; 5(1): 192-211, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31956468

RESUMEN

Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower than the value of 2.8 used commonly in literature. The reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...