Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
RSC Sustain ; 1(6): 1522-1529, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-38013944

The synthesis of 5,5'-bis(trifluoromethyl)-2,2'-bipyridine using 2-bromo-5-(trifluoromethyl) pyridine was achieved at 50 °C using palladium acetate, tetrabutylammonium iodide (TBAI), potassium carbonate, and isopropanol in Cyrene™ (dihydrolevoglucosenone), a bio-renewable "green" solvent formed by a two-step process from cellulose. Improvements were achieved with 50% of γ-valerolactone (GVL) in Cyrene™ resulting in a 95% yield and 99% product purity without the use of column chromatography or recrystallization. At 80 °C, the reaction was completed within 1 h. Full conversion with 1 mol% instead of 15 mol% of palladium acetate was observed within 10 h. We showed that the formed 2,2'-bipyridine product significantly accelerated the reaction probably due to the stabilization of the catalytic species. The addition of TBAI was essential for the rapid homocoupling, however, 20 mol% of TBAI was sufficient to reach full conversion of 2-bromo-5-(trifluoromethyl) pyridine within 6 h at 80 °C. Another improvement was observed with the substitution of isopropanol by 1,4-butanediol achieving full conversion within 6 h. 2-Bromopyridines with electron withdrawing substituents in the 6, 5, 4 ring position reacted under these conditions. 2-Bromopyridines with an electron donating substituent reacted slower. Overall, we demonstrated that the 50% GVL in Cyrene™ blend is a superior "green" and less toxic alternative to dimethylformamide for the reductive homocoupling reaction. Using a quantitative scoring for twelve principles of green chemistry (DOZN™), we found significant improvements that were mediated by higher yield (atom economy), shorter heating time and lower reaction temperature (energy efficiency), safer solvent (hazardous chemical synthesis), and safer chemistry (accident prevention).

2.
J Med Chem ; 66(14): 9853-9865, 2023 07 27.
Article En | MEDLINE | ID: mdl-37418196

Novel gamma-aminobutyric acid receptor (GABAAR) ligands structurally related to imidazobenzodiazepine MIDD0301 were synthesized using spiro-amino acid N-carboxyanhydrides (NCAs). These compounds demonstrated increased resistance to phase 2 metabolism and avoided the formation of a 6H isomer. Compound design was guided by molecular docking using the available crystal structure of the α1ß3γ2 GABAAR and correlated with in vitro binding data. The carboxylic acid containing GABAAR ligands have high aqueous solubility, low permeability, and low cell toxicity. The inability of GABAAR ligands to cross the blood-brain barrier was confirmed in vivo by the absence of sensorimotor inhibition. Pharmacological activities at lung GABAARs were demonstrated by ex vivo relaxation of guinea pig airway smooth muscle and reduction of methacholine-induced airway hyperresponsiveness (AHR) in conscious mice. We identified bronchodilator 5c with an affinity of 9 nM for GABAARs that was metabolically stable in the presence of human and mouse microsomes.


Bronchodilator Agents , Receptors, GABA-A , Mice , Humans , Animals , Guinea Pigs , Receptors, GABA-A/metabolism , Bronchodilator Agents/pharmacology , Ligands , Molecular Docking Simulation , gamma-Aminobutyric Acid
3.
Am J Respir Cell Mol Biol ; 67(4): 482-490, 2022 Oct.
Article En | MEDLINE | ID: mdl-35776523

Asthma is a common respiratory disease characterized, in part, by excessive airway smooth muscle (ASM) contraction (airway hyperresponsiveness). Various GABAAR (γ-aminobutyric acid type A receptor) activators, including benzodiazepines, relax ASM. The GABAAR is a ligand-operated Cl- channel best known for its role in inhibitory neurotransmission in the central nervous system. Although ASM cells express GABAARs, affording a seemingly logical site of action, the mechanism(s) by which GABAAR ligands relax ASM remains unclear. PI320, a novel imidazobenzodiazepine designed for tissue selectivity, is a promising asthma drug candidate. Here, we show that PI320 alleviates methacholine (MCh)-induced bronchoconstriction in vivo and relaxes peripheral airways preconstricted with MCh ex vivo using the forced oscillation technique and precision-cut lung slice experiments, respectively. Surprisingly, the peripheral airway relaxation demonstrated in precision-cut lung slices does not appear to be GABAAR-dependent, as it is not inhibited by the GABAAR antagonist picrotoxin or the benzodiazepine antagonist flumazenil. Furthermore, we demonstrate here that PI320 inhibits MCh-induced airway constriction in the absence of external Ca2, suggesting that PI320-mediated relaxation is not mediated by inhibition of Ca2+ influx in ASM. However, PI320 does inhibit MCh-induced intracellular Ca2+ oscillations in peripheral ASM, a key mediator of contraction that is dependent on sarcoplasmic reticulum Ca2+ mobilization. Furthermore, PI320 inhibits peripheral airway constriction induced by experimentally increasing the intracellular concentration of inositol triphosphate (IP3). These novel data suggest that PI320 relaxes murine peripheral airways by inhibiting intracellular Ca2+ mobilization in ASM, likely by inhibiting Ca2+ release through IP3Rs (IP3 receptors).


Asthma , Calcium , Animals , Asthma/drug therapy , Asthma/metabolism , Calcium/metabolism , Calcium Signaling , Flumazenil/metabolism , Inositol/metabolism , Ligands , Lung/metabolism , Methacholine Chloride/pharmacology , Mice , Muscle Contraction , Muscle, Smooth/metabolism , Picrotoxin/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Drug Dev Res ; 83(4): 979-992, 2022 06.
Article En | MEDLINE | ID: mdl-35246861

MIDD0301 is being developed as an oral drug to relax airway smooth muscle (ASM) and reduce lung inflammation in asthma. We report a comparative study of MIDD0301 and its S isomer (MIDD0301S), and found that the compounds have equivalent affinity for γ-aminobutyric acid type A receptor (GABAA R) expressed in rat brain, with half maximal inhibitory concentration values of 25.1 and 26.3 nM for the S and R enantiomers, respectively. Both compounds relaxed substance P contracted ASM within 30 min and neither enantiomer revealed affinity to 48 receptors in an off-target screen. Both enantiomers reduced airway hyperresponsiveness (AHR) with nebulized and oral dosing in two mouse models of bronchoconstriction. In A/J mice, which are very sensitive to methacholine-induced bronchoconstriction, we observed reduction of AHR at 10.8 mg/kg MIDD0301 and 15 mg/kg MIDD0301S. Using oral administration, 100 mg/kg/day for 3 days of either enantiomer was sufficient to reduce AHR. In a model of severe airway inflammation induced by interferon-γ and lipopolysaccharide (LPS), we observed reduction of AHR at 7.2 mg/kg for both enantiomers using nebulized administration, and at 100 mg/kg for oral administration. MIDD0301 and MIDD0301S did not undergo Phase I metabolism. Glucuronidation was observed for both compounds, whereas only MIDD0301 formed the corresponding glucoside in the presence of kidney microsomes. Pharmacokinetic analysis identified glucuronides as the major metabolite with concentrations up to 20-fold more than the parent compound. MIDD0301 glucuronide and MIDD0301 taurine bind GABAA Rs, although 10-fold weaker than MIDD0301. In mouse blood, the taurine adduct was only observed for MIDD0301. Overall, both compounds exhibited similar receptor binding and pharmacodynamic properties with subtle differences in metabolism and greater oral availability and blood concentrations of MIDD0301S.


Asthma , Animals , Asthma/drug therapy , Asthma/metabolism , Azepines , Imidazoles , Mice , Rats , Receptors, GABA , Taurine , gamma-Aminobutyric Acid
5.
ACS Pharmacol Transl Sci ; 5(2): 80-88, 2022 Feb 11.
Article En | MEDLINE | ID: mdl-35187417

We report the modification of MIDD0301, an imidazodiazepine GABAA receptor (GABAAR) ligand, using two alkyl substituents. We developed PI310 with a 6-(4-phenylbutoxy)hexyl chain as used in the long-acting ß2-agonist salmeterol and PI320 with a poly(ethylene glycol) chain as used to improve the brain:plasma ratio of naloxegol, a naloxone analogue. Both imidazodiazepines showed affinity toward the GABAAR binding site of clonazepam, with IC50 values of 576 and 242 nM, respectively. Molecular docking analysis, using the available α1ß3γ2 GABAAR structural data, suggests binding of the diazepine core between the α1+/γ2- interface, whereas alkyl substituents are located outside the binding site and thus interact with the protein surface and solvent molecules. The physicochemical properties of these compounds are very different. The solubility of PI310 is low in water. PEGylation of PI320 significantly improves aqueous solubility and cell permeability. Neither compound is toxic in HEK293 cells following exposure at >300 µM for 18 h. Ex vivo studies using guinea pig tracheal rings showed that PI310 was unable to relax the constricted airway smooth muscle. In contrast, PI320 induced muscle relaxation at organ bath concentrations as low as 5 µM, with rapid onset (15 min) at 25 µM. PI320 also reduced airway hyper-responsiveness in vivo in a mouse model of steroid-resistant lung inflammation induced by intratracheal challenge with INFγ and lipopolysaccharide (LPS). At nebulized doses of 7.2 mg/kg, PI320 and albuterol were equally effective in reducing airway hyper-responsiveness. Ten minutes after nebulization, the lung concentration of PI320 was 50-fold that of PI310, indicating superior availability of PI320 when nebulized as an aqueous solution. Overall, PI320 is a promising inhaled drug candidate to quickly relax airway smooth muscle in bronchoconstrictive disorders, such as asthma. Future studies will evaluate the pharmacokinetic/pharmacodynamic properties of PI320 when administered orally.

6.
Curr Drug Metab ; 22(14): 1114-1123, 2021.
Article En | MEDLINE | ID: mdl-34856893

BACKGROUND: MIDD0301 is an oral asthma drug candidate that binds GABAA receptors on airway smooth muscle and immune cells. OBJECTIVE: The objective of this study is to identify and quantify MIDD0301 metabolites in vitro and in vivo and determine the pharmacokinetics of oral, IP, and IV administered MIDD0301. METHODS: In vitro conversion of MIDD0301 was performed using liver and kidney microsomes/S9 fractions followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A LC-MS/MS method was developed using synthesized standards to quantify MIDD0301 and its metabolites in urine and feces. Blood, lung, and brain were harvested from animals that received MIDD0301 by oral, IP, and IV administration, followed by LCMS/ MS quantification. Imaging mass spectrometry was used to demonstrate the presence of MIDD0301 in the lung after oral administration. RESULTS: MIDD0301 is stable in the presence of liver and kidney microsomes and S9 fractions for at least two hours. MIDD0301 undergoes conversion to the corresponding glucuronide and glucoside in the presence of conjugating cofactors. For IP and IV administration, unconjugated MIDD0301 together with significant amounts of MIDD0301 glucoside and MIDD0301 taurine were found in urine and feces. Less conjugation was observed following oral administration, with MIDD0301 glucuronide being the main metabolite. Pharmacokinetic quantification of MIDD0301 in blood, lung, and brain showed very low levels of MIDD0301 in the brain after oral, IV, or IP administration. The drug half-life in these tissues ranged between 4-6 hours for IP and oral and 1-2 hours for IV administration. Imaging mass spectrometry demonstrated that orally administered MIDD0301 distributes uniformly in the lung parenchyma. CONCLUSION: MIDD0301 undergoes no phase I and moderate phase II metabolism.


Anti-Asthmatic Agents/pharmacokinetics , Azepines/pharmacokinetics , Imidazoles/pharmacokinetics , Kidney/metabolism , Microsomes, Liver/metabolism , Administration, Intravenous , Administration, Oral , Animals , Anti-Asthmatic Agents/administration & dosage , Azepines/administration & dosage , Chromatography, Liquid , Dogs , Female , Humans , Imidazoles/administration & dosage , Injections, Intraperitoneal , Lung/metabolism , Mice , Microsomes/metabolism , Rats , Tandem Mass Spectrometry , Tissue Distribution
7.
Bioorg Chem ; 116: 105310, 2021 11.
Article En | MEDLINE | ID: mdl-34482171

We describe the synthesis and broad profiling of calcitroic acid (CTA) as vitamin D receptor (VDR) ligand. The x-ray co-crystal structure of the Danio Rerio VDR ligand binding domain in complex with CTA and peptide MED1 confirmed an agonistic conformation of the receptor. CTA adopted a similar conformation as 1,25(OH)2D3 in the binding pocket. A hydrogen bond with His333 and a water molecule were observed in the binding pocket, which was accommodated due to the shorter CTA side chain. In contrast, 1,25(OH)2D3 interacted with His423 and His333 due to its longer side chain. In vitro, the EC50 values of CTA and CTA-ME for VDR-mediated transcription were 2.89 µM and 0.66 µM, respectively, confirming both compounds as VDR agonists. CTA was further evaluated for interaction with fourteen nuclear receptors demonstrating selective activation of VDR. VDR mediated gene regulation by CTA in intestinal cells was observed for the VDR target gene CYP24A1. CTA at 10 µM upregulated CYP24A1 with similar efficacy as 1,25(OH)2D3 at 20 nM and 100-fold stronger compared to lithocholic acid at 10 µM. CTA reduced the transcription of iNOS and IL-1ß in interferon γ and lipopolysaccharide stimulated mouse macrophages resulting in a reduction of nitric oxide production and secretion of IL-1ß. These observed anti-inflammatory properties of 20 µM CTA were similar to 20 nM 1,25(OH)2D3.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Calcitriol/analogs & derivatives , Receptors, Calcitriol/agonists , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Calcitriol/chemical synthesis , Calcitriol/chemistry , Calcitriol/pharmacology , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Conformation , RAW 264.7 Cells , Structure-Activity Relationship
...