Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
J Mass Spectrom ; 59(5): e5013, 2024 May.
Article En | MEDLINE | ID: mdl-38605450

Ion mobility spectrometry coupled to mass spectrometry (IMS/MS) is a widely used tool for biomolecular separations and structural elucidation. The application of IMS/MS has resulted in exciting developments in structural proteomics and genomics. This perspective gives a brief background of the field, addresses some of the important issues in making structural measurements, and introduces complementary techniques.


Proteins , Proteomics , Proteins/analysis , Mass Spectrometry/methods , Ion Mobility Spectrometry/methods
2.
Analyst ; 149(1): 125-136, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37982746

Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.


Intrinsically Disordered Proteins , alpha-Synuclein , alpha-Synuclein/chemistry , Protein Conformation , Tandem Mass Spectrometry , Intrinsically Disordered Proteins/chemistry
3.
J Am Soc Mass Spectrom ; 34(6): 1153-1159, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37167025

Various ion mobility-based separation techniques and instruments have been recently developed to increase the operational resolution of ion mobility separations, especially of isomers and isobars. In addition to developments in instrumentation, different covalent and noncovalent derivatization techniques have helped achieve effective separations by magnifying minor differences in collision cross section. Among these methodologies is host-guest complex formation and, a new development presented herein, charge inversion ion-ion reactions coupled to ion mobility separations. We used these methods to enable formation of complexes between isomeric deprotonated oligosaccharides and alkaline earth metals (in solution) and alkaline earth metal-trisphenanthroline complexes (in vacuo), observing minor shifts in ion mobility arrival times for the charge inversion reaction products as well as unique mobility fingerprints indicative of separations of α/ß anomers of disaccharides. For example, we have demonstrated separations between reducing disaccharides such as lactose and lactulose and nonreducing disaccharides. We also observed separations based on the pyranose/furanose configurations of the isomers. These results suggest the potential for ion/ion reactions to enable isomer separation of biomolecules from various compound classes using ion mobility-mass spectrometry (IM-MS).

4.
Anal Bioanal Chem ; 415(5): 749-758, 2023 Feb.
Article En | MEDLINE | ID: mdl-36622393

Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under "gentle" (i.e., low energy) ion transmission conditions with structures measured under "harsh" (i.e., higher energy) transmission. This work confirms that when using "gentle" instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, "harsh" conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.


Cytochromes c , Ion Mobility Spectrometry , Cytochromes c/chemistry , Electrons , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Protein Unfolding , Acids , Ions/chemistry , Water
5.
Anal Chem ; 94(39): 13301-13310, 2022 10 04.
Article En | MEDLINE | ID: mdl-36100581

The speed, sensitivity, and tolerance of heterogeneity, as well as the kinetic trapping of solution-like states during electrospray, make native mass spectrometry an attractive method to study protein structure. Increases in the resolution of ion mobility measurements and in mass resolving power and range are leading to the increase of the information content of intact protein measurements and an expanded role of mass spectrometry in structural biology. Herein, a suite of different length noncovalent (sulfonate to positively charged side chain) cross-linkers was introduced via gas-phase ion/ion chemistry and used to determine distance restraints of kinetically trapped gas-phase structures of native-like cytochrome c ions. Electron capture dissociation allowed for the identification of cross-linked sites. Different length linkers resulted in distinct pairs of side chains being linked, supporting the ability of gas-phase cross-linking to be structurally specific. The gas-phase lengths of the cross-linkers were determined by conformational searches and density functional theory, allowing for the interpretation of the cross-links as distance restraints. These distance restraints were used to model gas-phase structures with molecular dynamics simulations, revealing a mixture of structures with similar overall shape/size but distinct features, thereby illustrating the kinetic trapping of multiple native-like solution structures in the gas phase.


Cytochromes c , Gases , Cytochromes c/chemistry , Gases/chemistry , Ions/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
6.
Anal Chem ; 94(25): 8975-8982, 2022 06 28.
Article En | MEDLINE | ID: mdl-35708487

In this article, we present an approach for conformationally multiplexed, localized hydrogen deuterium exchange (HDX) of gas-phase protein ions facilitated by ion mobility (IM) followed by electron capture dissociation (ECD). A quadrupole-IM-time of flight instrument previously modified to enable ECD in transmission mode (without ion trapping) immediately following a mobility separation was further modified to allow for deuterated ammonia (ND3) to be leaked in after m/z selection. Collisional activation was minimized to prevent deuterium scrambling from giving structurally irrelevant results. Gas-phase HDX with ECD fragmentation for exchange site localization was demonstrated with the extensively studied protein folding models ubiquitin and cytochrome c. Ubiquitin was ionized from conditions that stabilize the native state and conditions that stabilize the partially folded A-state. IM of deuterated ubiquitin 6+ ions allowed the separation of more compact conformers from more extended conformers. ECD of the separated subpopulations revealed that the more extended (later arriving) conformers had significant, localized differences in the amount of HDX observed. The 5+ charge state showed many regions with protection from HDX, and the 11+ charge state, ionized from conditions that stabilize the A-state, showed high levels of deuterium incorporation throughout most of the protein sequence. The 7+ ions of cytochrome c ionized from aqueous conditions showed greater HDX with unstructured regions of the protein relative to interior, structured regions, especially those involved in heme binding. With careful tuning and attention to deuterium scrambling, our approach holds promise for determining region-specific information on a conformer-selected basis for gas-phase protein structures, including localized characterizations of ligand, epitope, and protein-protein binding.


Deuterium Exchange Measurement , Hydrogen , Cytochromes c/chemistry , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Electrons , Hydrogen/chemistry , Ions/chemistry , Proteins/chemistry , Ubiquitin/chemistry
7.
Biochim Biophys Acta Proteins Proteom ; 1870(1): 140732, 2022 01.
Article En | MEDLINE | ID: mdl-34653668

Native mass spectrometry (MS), the analysis of proteins and protein complexes from solutions that stabilize native solution structures, is a rapidly expanding area. There is strong evidence supporting the retention of proteins' native folds in the absence of solvent under the experimental timescales of MS experiments. Therefore, instrumentation has been developed to use gas-phase native-like protein ions to exploit the speed, sensitivity, and selectivity of mass spectrometry approaches to solve emerging problems in structural biology. This article reviews some of the recent advances and applications in gas-phase instrumentation for structural proteomics.


Mass Spectrometry/methods , Mass Spectrometry/instrumentation , Multiprotein Complexes/chemistry
8.
Bioinformatics ; 37(22): 4193-4201, 2021 11 18.
Article En | MEDLINE | ID: mdl-34145874

MOTIVATION: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. RESULTS: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing. AVAILABILITY AND IMPLEMENTATION: https://github.com/PNNL-Comp-Mass-Spec/AutoCCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Demo datasets are publicly available at MassIVE (Dataset ID: MSV000085979).


Ion Mobility Spectrometry , Software , Mass Spectrometry/methods , Ions
9.
Int J Mass Spectrom ; 4632021 May.
Article En | MEDLINE | ID: mdl-33716558

Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.

10.
J Am Soc Mass Spectrom ; 32(9): 2313-2321, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-33730481

The combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and noncovalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/sulfo-benzoyl-HOAt reagent anion long-lived complexes formed via ion/ion reactions. The ΔH‡ and ΔS‡ of major processes observed from collisional activation of long-lived gas-phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. The ΔG‡ values of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though the ΔG‡ values between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization.

11.
J Am Soc Mass Spectrom ; 31(5): 1037-1046, 2020 May 06.
Article En | MEDLINE | ID: mdl-32255627

Gas-phase ion/ion chemistry was coupled to ion mobility/mass spectrometry analysis to correlate the structure of gaseous ubiquitin to its solution structures with selective covalent structural probes. Collision cross section (CCS) distributions were measured to ensure the ubiquitin ions were not unfolded when they were introduced to the gas phase. Aqueous solutions stabilizing the native state of ubiquitin yielded folded ubiquitin structures with CCS values consistent with previously published literature. Denaturing solutions favored several families of unfolded conformations for most of the charge states evaluated. Gas-phase covalent labeling via ion/ion reactions was followed by collision-induced dissociation of the intact, labeled protein to determine which residues were labeled. Ubiquitin 5+ and 6+ electrosprayed from aqueous conditions were covalently modified preferentially at the lysine 29 and arginine 54 positions, indicating that elements of three-dimensional structure were maintained in the gas phase. On the other hand, most ubiquitin ions produced in denaturing conditions were labeled at various other lysine residues, likely due to the availability of additional sites following methanol- and low-pH-induced unfolding. These data support the conservation of ubiquitin structural elements in the gas phase. The research presented here provides the basis for residue-specific characterization of biomolecules in the gas phase.

12.
Anal Chem ; 91(18): 11952-11962, 2019 09 17.
Article En | MEDLINE | ID: mdl-31450886

We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.


Deuterium/chemistry , Carbon Isotopes/chemistry , Ion Mobility Spectrometry , Ions/chemistry , Ions/isolation & purification , Mass Spectrometry , Nitrogen Isotopes/chemistry
13.
J Am Soc Mass Spectrom ; 30(6): 967-976, 2019 Jun.
Article En | MEDLINE | ID: mdl-30834510

Here, we present simulations and describe the initial implementation of a device capable of performing simultaneous ion mobility (IM) separations of positive and negative ions based upon the structures for lossless ion manipulations (SLIM). To achieve dual polarity ion confinement, the DC fields used for lateral confinement in previous SLIM were replaced with RF fields. Concurrent ion transport and mobility separation in the SLIM device are shown possible due to the nature of the traveling wave (TW) voltage profile which has potential minima at opposite sides of the wave for each ion polarity. We explored the potential for performing simultaneous IM separations of cations and anions over the same SLIM path and the impacts on the achievable IM resolution and resolving power. Initial results suggest comparable IM performance with previous single-polarity SLIM separations can be achieved. We also used ion trajectory simulations to investigate the capability to manipulate the spatial distributions of ion populations based on their polarities by biasing the RF fields and TW potentials on each SLIM surface so as to limit the interactions between opposite polarity ions. Graphical Abstract.

14.
Electrophoresis ; 39(24): 3148-3155, 2018 12.
Article En | MEDLINE | ID: mdl-30168603

Enantiomeric molecular evaluations remain an enormous challenge for current analytical techniques. To date, derivatization strategies and long separation times are generally required in these studies, and the development and implementation of new approaches are needed to increase speed and distinguish currently unresolvable compounds. Herein, we describe a method using chiral cyclodextrin adducts and structures for lossless ion manipulations (SLIM) and serpentine ultralong path with extended routing (SUPER) ion mobility (IM) to achieve rapid, high resolution separations of d and l enantiomeric amino acids. In the analyses, a chiral cyclodextrin is added to each sample. Two cyclodextrins were found to complex each amino acid molecule (i.e. potentially sandwiching the amino acid in their cavities) and forming host-guest noncovalent complexes that were distinct for each d and l amino acid pair studied and thus separable with IM in SLIM devices. The SLIM was also used to accumulate much larger ion populations than previously feasible for evaluation and therefore allow enantiomeric measurements of higher sensitivity, with gains in resolution from our ultralong path separation capabilities, than previously reported by any other IM-based approach.


Amino Acids/analysis , Amino Acids/chemistry , Cyclodextrins/chemistry , Amino Acids/isolation & purification , Ions , Mass Spectrometry/methods , Models, Molecular , Stereoisomerism
15.
Anal Chem ; 90(18): 11086-11091, 2018 09 18.
Article En | MEDLINE | ID: mdl-30102518

Bile acids (BAs) constitute an important class of steroid metabolites often displaying changes associated with disease states and other health conditions. Current analyses for these structurally similar compounds are limited by a lack of sensitivity and long separation times with often poor isomeric resolution. To overcome these challenges and provide rapid analyses for the BA isomers, we utilized cyclodextrin adducts in conjunction with novel ion mobility (IM) separation capabilities provided by structures for lossless ion manipulations (SLIM). Cyclodextrin was found to interact with both the tauro- and glyco-conjugated BA isomers studied, forming rigid noncovalent host-guest inclusion complexes. Without the use of cyclodextrin adducts, the BA isomers were found to be nearly identical in their respective mobilities and thus unable to be baseline resolved. Each separation of the cyclodextrin-bile acid host-guest inclusion complex was performed in less than 1 s, providing a much more rapid alternative to current liquid chromatography-based separations. SLIM provided capabilities for the accumulation of larger ion populations and IM peak compression that resulted in much higher resolution separations and increased signal intensities for the BA isomers studied.


Bile Acids and Salts/isolation & purification , Cyclodextrins/chemistry , Mass Spectrometry/methods , Bile Acids and Salts/chemistry , Ions/chemistry , Ions/isolation & purification , Isomerism , Mass Spectrometry/economics , Models, Molecular , Time Factors
16.
Anal Chem ; 90(18): 10889-10896, 2018 09 18.
Article En | MEDLINE | ID: mdl-30118596

Phosphoproteomics greatly augments proteomics and holds tremendous potential for insights into the modulation of biological systems for various disease states. However, numerous challenges hinder conventional methods in terms of measurement sensitivity, throughput, quantification, and capabilities for confident phosphopeptide and phosphosite identification. In this work, we report the first example of integrating structures for lossless ion manipulations ion mobility-mass spectrometry (SLIM IM-MS) with online reversed-phase liquid chromatography (LC) to evaluate its potential for addressing the aforementioned challenges. A mixture of 51 heavy-labeled phosphopeptides was analyzed with a SLIM IM module having integrated ion accumulation and long-path separation regions. The SLIM IM-MS provided limits of detection as low as 50-100 pM (50-100 amol/µL) for several phosphopeptides, with the potential for significant further improvements. In addition, conventionally problematic phosphopeptide isomers could be resolved following an 18 m SLIM IM separation. The 2-D LC-IM peak capacity was estimated as ∼9000 for a 90 min LC separation coupled to an 18 m SLIM IM separation, considerably higher than LC alone and providing a basis for both improved identification and quantification, with additional gains projected with the future use of longer path SLIM IM separations. Thus, LC-SLIM IM-MS offers great potential for improving the sensitivity, separation, and throughput of phosphoproteomics analyses.


Chromatography, Reverse-Phase/methods , Ion Mobility Spectrometry/methods , Phosphopeptides/isolation & purification , Amino Acid Sequence , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Humans , Isomerism , Mass Spectrometry/methods , Phosphopeptides/analysis , Shewanella/chemistry
17.
Science ; 358(6369): 1461-1466, 2017 12 15.
Article En | MEDLINE | ID: mdl-29242347

Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with l-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of l- and d-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.


Computer Simulation , Computer-Aided Design , Models, Chemical , Peptides/chemistry , Protein Stability , Drug Design , Nuclear Magnetic Resonance, Biomolecular , Protein Folding
18.
J Am Soc Mass Spectrom ; 28(7): 1442-1449, 2017 07.
Article En | MEDLINE | ID: mdl-28560562

Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented. Graphical Abstract ᅟ.

19.
Anal Chem ; 89(12): 6432-6439, 2017 06 20.
Article En | MEDLINE | ID: mdl-28497957

We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within structures for lossless ion manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also efficient ion population compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a SLIM serpentine ultralong path with extended routing (SUPER) region after which CRIMP compression allows the large ion populations to be "squeezed". The SLIM SUPER IM module has two regions, one operating with conventional traveling waves (i.e., traveling trap; TT region) and the second having an intermittently pausing or "stuttering" TW (i.e., stuttering trap; ST region). When a stationary voltage profile was used in the ST region, ions are blocked at the TT-ST interface and accumulated in the TT region and then can be released by resuming a conventional TW in the ST region. The population can also be compressed using CRIMP by the repetitive merging of ions distributed over multiple TW bins in the TT region into a single TW bin in the ST region. Ion accumulation followed by CRIMP compression provides the basis for the use of larger ion populations for IM separations. We show that over 109 ions can be accumulated with high efficiency in the present device and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Approximately 5 × 109 charges introduced from an electrospray ionization source were trapped for a 40 s accumulation period, more than 2 orders of magnitude greater than the previously reported charge capacity of an ion funnel trap. Importantly, we show that extended ion accumulation in conjunction with CRIMP compression and multiple passes through the serpentine path provides the basis for a highly desirable combination of ultrahigh sensitivity and SLIM SUPER high-resolution IM separations.


Peptides/analysis , Ion Mobility Spectrometry/instrumentation , Ions/chemistry , Mass Spectrometry/instrumentation
20.
J Phys Chem Lett ; 8(7): 1381-1388, 2017 Apr 06.
Article En | MEDLINE | ID: mdl-28267339

Due to the recently uncovered health benefits and anti-HIV activities of dicaffeoylquinic acids (diCQAs), understanding their structures and functions is of great interest for drug discovery efforts. DiCQAs are analytically challenging to identify and quantify since they commonly exist as a diverse mixture of positional and geometric (cis/trans) isomers. In this work, we utilized ion mobility spectrometry coupled with mass spectrometry to separate the various isomers before and after UV irradiation. The experimental collision cross sections were then compared with theoretical structures to differentiate and identify the diCQA isomers. Our analyses found that naturally the diCQAs existed predominantly as trans/trans isomers, but after 3 h of UV irradiation, cis/cis, cis/trans, trans/cis, and trans/trans isomers were all present in the mixture. This is the first report of successful differentiation of cis/trans diCQA isomers individually, which shows the great promise of IMS coupled with theoretical calculations for determining the structure and activity relationships of different isomers in drug discovery studies.

...