Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Article En | MEDLINE | ID: mdl-38603762

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Antibodies, Bispecific , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Antibodies, Viral/immunology , Humans , Filoviridae/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Monoclonal/immunology , Female , Mice, Inbred BALB C , Filoviridae Infections/immunology , Filoviridae Infections/therapy , Filoviridae Infections/prevention & control
2.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Article En | MEDLINE | ID: mdl-37315110

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Antibodies, Viral , Orthohantavirus , Humans , Benchmarking , Broadly Neutralizing Antibodies , Conserved Sequence
3.
Immunity ; 55(9): 1710-1724.e8, 2022 09 13.
Article En | MEDLINE | ID: mdl-35944529

Human metapneumovirus (hMPV) is a leading cause of acute lower respiratory tract infections in high-risk populations, yet there are no vaccines or anti-viral therapies approved for the prevention or treatment of hMPV-associated disease. Here, we used a high-throughput single-cell technology to interrogate memory B cell responses to the hMPV fusion (F) glycoprotein in young adult and elderly donors. Across all donors, the neutralizing antibody response was primarily directed to epitopes expressed on both pre- and post-fusion F conformations. However, we identified rare, highly potent broadly neutralizing antibodies that recognize pre-fusion-specific epitopes and structurally characterized an antibody that targets a site of vulnerability at the pre-fusion F trimer apex. Additionally, monotherapy with neutralizing antibodies targeting three distinct antigenic sites provided robust protection against lower respiratory tract infection in a small animal model. This study provides promising monoclonal antibody candidates for passive immunoprophylaxis and informs the rational design of hMPV vaccine immunogens.


Antibodies, Neutralizing , Antibodies, Viral , Metapneumovirus , Respiratory Tract Infections , Aged , Animals , Epitopes , Glycoproteins , Humans , Viral Fusion Proteins , Young Adult
4.
Sci Transl Med ; 14(636): eabl5399, 2022 03 16.
Article En | MEDLINE | ID: mdl-35294259

The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.


Hantavirus Infections , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Puumala virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cricetinae , Epitopes , Glycoproteins , Hemorrhagic Fever with Renal Syndrome/prevention & control , Humans
5.
Cell Host Microbe ; 30(2): 248-259.e6, 2022 02 09.
Article En | MEDLINE | ID: mdl-34998466

The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.


Yellow Fever Vaccine , Yellow Fever , Antibodies, Viral , Brazil , Genotype , Humans , Vaccines, Attenuated , Yellow fever virus/genetics
6.
Front Immunol ; 12: 729851, 2021.
Article En | MEDLINE | ID: mdl-34721393

Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.


Antibodies, Bispecific/pharmacology , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Lysosomes/drug effects , Niemann-Pick C1 Protein/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Virus Internalization/drug effects , Antibodies, Bispecific/genetics , Broadly Neutralizing Antibodies/genetics , Ebolavirus/immunology , Ebolavirus/pathogenicity , Epitopes , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans , Ligands , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/virology , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/immunology , Niemann-Pick C1 Protein/metabolism , Protein Engineering , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , THP-1 Cells , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
7.
mBio ; 12(5): e0247321, 2021 10 26.
Article En | MEDLINE | ID: mdl-34607456

Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neutralization. Therefore, therapies that are less susceptible to resistance are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD). Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an epitope that includes residue F490. The most potent NTD nAb epitope included Y145, K150, and W152. As seen with some of the natural VOC, the neutralization potencies of COVID-19 convalescent-phase sera were reduced by 4- to 16-fold against rVSV-SARS2 bearing Y145D, K150E, or W152R spike mutations. Moreover, we found that combining RBD and NTD nAbs did not enhance their neutralization potential. Notably, the same combination of RBD and NTD nAbs limited the development of neutralization-escape mutants in vitro, suggesting such a strategy may have higher efficacy and utility for mitigating the emergence of VOC. IMPORTANCE The U.S. FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (MAb) therapies for the treatment of mild to moderate COVID-19. These MAb therapeutics are solely targeting the receptor-binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of the spike protein also carries crucial neutralizing epitopes. Here, we show that key mutations in the N-terminal domain can reduce the neutralizing capacity of convalescent-phase COVID-19 sera. We report that a combination of two neutralizing antibodies targeting the receptor-binding and N-terminal domains may be beneficial to combat the emergence of virus variants.


Antibodies, Neutralizing/immunology , COVID-19/genetics , COVID-19/immunology , Mutation/immunology , RNA-Binding Motifs/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Humans , Neutralization Tests
8.
Front Immunol ; 12: 674021, 2021.
Article En | MEDLINE | ID: mdl-33986759

A key hurdle to making adeno-associated virus (AAV) capsid mediated gene therapy broadly beneficial to all patients is overcoming pre-existing and therapy-induced immune responses to these vectors. Recent advances in high-throughput DNA synthesis, multiplexing and sequencing technologies have accelerated engineering of improved capsid properties such as production yield, packaging efficiency, biodistribution and transduction efficiency. Here we outline how machine learning, advances in viral immunology, and high-throughput measurements can enable engineering of a new generation of de-immunized capsids beyond the antigenic landscape of natural AAVs, towards expanding the therapeutic reach of gene therapy.


Capsid/immunology , Genetic Therapy/methods , Machine Learning , Animals , Dependovirus , Genetic Vectors , Humans
9.
Sci Immunol ; 6(56)2021 02 23.
Article En | MEDLINE | ID: mdl-33622975

A comprehensive understanding of the kinetics and evolution of the human B cell response to SARS-CoV-2 infection will facilitate the development of next-generation vaccines and therapies. Here, we longitudinally profiled this response in mild and severe COVID-19 patients over a period of five months. Serum neutralizing antibody (nAb) responses waned rapidly but spike (S)-specific IgG+ memory B cells (MBCs) remained stable or increased over time. Analysis of 1,213 monoclonal antibodies (mAbs) isolated from S-specific MBCs revealed a primarily de novo response that displayed increased somatic hypermutation, binding affinity, and neutralization potency over time, providing evidence for prolonged antibody affinity maturation. B cell immunodominance hierarchies were similar across donor repertoires and remained relatively stable as the immune response progressed. Cross-reactive B cell populations, likely re-called from prior endemic beta-coronavirus exposures, comprised a small but stable fraction of the repertoires and did not contribute to the neutralizing response. The neutralizing antibody response was dominated by public clonotypes that displayed significantly reduced activity against SARS-CoV-2 variants emerging in Brazil and South Africa that harbor mutations at positions 501, 484 and 417 in the S protein. Overall, the results provide insight into the dynamics, durability, and functional properties of the human B cell response to SARS-CoV-2 infection and have implications for the design of immunogens that preferentially stimulate protective B cell responses.


B-Lymphocytes/immunology , COVID-19/immunology , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/virology , Cohort Studies , Cross Reactions , Female , Humans , Immunologic Memory , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/immunology
10.
bioRxiv ; 2020 May 16.
Article En | MEDLINE | ID: mdl-32511337

Broadly protective vaccines against known and pre-emergent coronaviruses are urgently needed. Critical to their development is a deeper understanding of cross-neutralizing antibody responses induced by natural human coronavirus (HCoV) infections. Here, we mined the memory B cell repertoire of a convalescent SARS donor and identified 200 SARS-CoV-2 binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of pre-existing memory B cells (MBCs) elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a new target for the rational design of pan-sarbecovirus vaccines.

11.
J Immunol ; 205(2): 425-437, 2020 07 15.
Article En | MEDLINE | ID: mdl-32513849

The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.


Acyltransferases/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , Ebola Vaccines/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Mycobacterium bovis/immunology , Viral Envelope Proteins/immunology , Acyltransferases/genetics , Animals , Antibodies, Viral/metabolism , Antibody Formation , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Disease Models, Animal , Ebola Vaccines/genetics , Female , Humans , Immunoglobulin G/blood , Lymphocyte Activation , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Viral Envelope Proteins/genetics
12.
Science ; 369(6504): 731-736, 2020 08 07.
Article En | MEDLINE | ID: mdl-32540900

Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines.


Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2 , Antibody Affinity , B-Lymphocyte Subsets/immunology , Binding Sites , Cross Reactions , Epitopes , Female , Humans , Immunologic Memory , Male , Middle Aged , Neutralization Tests , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Receptors, Coronavirus , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
13.
Proc Natl Acad Sci U S A ; 117(12): 6675-6685, 2020 03 24.
Article En | MEDLINE | ID: mdl-32152119

A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.


Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Yellow Fever Vaccine/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Adult , Humans , Vaccination , Vaccines, Attenuated/immunology , Viral Envelope Proteins/immunology , Virus Replication , Yellow Fever/immunology , Yellow Fever/virology , Yellow Fever Vaccine/administration & dosage
14.
Proc Natl Acad Sci U S A ; 117(7): 3768-3778, 2020 02 18.
Article En | MEDLINE | ID: mdl-32015126

Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail. We produced a panel of SUDV glycoprotein (GP)-specific human chimeric monoclonal antibodies (mAbs) using both plant and mammalian expression systems and completed head-to-head in vitro and in vivo evaluations. Neutralizing activity, competitive binding groups, and epitope specificity of SUDV mAbs were defined before assessing protective efficacy of individual mAbs using a mouse model of SUDV infection. Of the mAbs tested, GP base-binding mAbs were more potent neutralizers and more protective than glycan cap- or mucin-like domain-binding mAbs. No significant difference was observed between plant and mammalian mAbs in any of our in vitro or in vivo evaluations. Based on in vitro and rodent testing, a combination of two SUDV-specific mAbs, one base binding (16F6) and one glycan cap binding (X10H2), was down-selected for assessment in a macaque model of SUDV infection. This cocktail, RIID F6-H2, provided protection from SUDV infection in rhesus macaques when administered at 50 mg/kg on days 4 and 6 postinfection. RIID F6-H2 is an effective postexposure SUDV therapy and provides a potential treatment option for managing human SUDV infection.


Antibodies, Viral/administration & dosage , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Ebolavirus/genetics , Female , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immunotherapy , Macaca mulatta , Male , Mice , Viral Proteins/immunology
15.
Cell Rep ; 28(13): 3300-3308.e4, 2019 Sep 24.
Article En | MEDLINE | ID: mdl-31553901

Monoclonal antibodies (mAbs) have recently emerged as one of the most promising classes of biotherapeutics. A potential advantage of B cell-derived mAbs as therapeutic agents is that they have been subjected to natural filtering mechanisms, which may enrich for B cell receptors (BCRs) with favorable biophysical properties. Here, we evaluated 400 human mAbs for polyreactivity, hydrophobicity, and thermal stability using high-throughput screening assays. Overall, mAbs derived from memory B cells and long-lived plasma cells (LLPCs) display reduced levels of polyreactivity, hydrophobicity, and thermal stability compared with naive B cell-derived mAbs. Somatic hypermutation (SHM) is inversely associated with all three biophysical properties, as well as BCR expression levels. Finally, the developability profiles of the human B cell-derived mAbs are comparable with those observed for clinical mAbs, suggesting their high therapeutic potential. The results provide insight into the biophysical consequences of affinity maturation and have implications for therapeutic antibody engineering and development.


Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Humans , Molecular Conformation
16.
Nat Struct Mol Biol ; 26(3): 204-212, 2019 03.
Article En | MEDLINE | ID: mdl-30833785

The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.


Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ebolavirus/immunology , Viral Fusion Proteins/immunology , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Crystallography, X-Ray , Humans , Protein Structure, Tertiary , Survivors
17.
Cell Host Microbe ; 25(1): 39-48.e5, 2019 01 09.
Article En | MEDLINE | ID: mdl-30629917

Passive administration of monoclonal antibodies (mAbs) is a promising therapeutic approach for Ebola virus disease (EVD). However, all mAbs and mAb cocktails that have entered clinical development are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against outbreak-causing Bundibugyo virus (BDBV) and Sudan virus (SUDV). Here, we advance MBP134, a cocktail of two broadly neutralizing human mAbs, ADI-15878 from an EVD survivor and ADI-23774 from the same survivor but specificity-matured for SUDV GP binding affinity, as a candidate pan-ebolavirus therapeutic. MBP134 potently neutralized all ebolaviruses and demonstrated greater protective efficacy than ADI-15878 alone in EBOV-challenged guinea pigs. A second-generation cocktail, MBP134AF, engineered to effectively harness natural killer (NK) cells afforded additional improvement relative to its precursor in protective efficacy against EBOV and SUDV in guinea pigs. MBP134AF is an optimized mAb cocktail suitable for evaluation as a pan-ebolavirus therapeutic in nonhuman primates.


Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Animal Welfare , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/administration & dosage , Antibodies, Viral/therapeutic use , Antiviral Agents , Disease Models, Animal , Ebolavirus/pathogenicity , Epitopes/immunology , Female , Filoviridae/immunology , Guinea Pigs , Hemorrhagic Fever, Ebola/virology , Humans , Immunotherapy , Mice , Mice, Inbred BALB C , Mice, Knockout , Recombinant Proteins/immunology , Treatment Outcome
18.
Cell Host Microbe ; 25(1): 49-58.e5, 2019 01 09.
Article En | MEDLINE | ID: mdl-30629918

Recent and ongoing outbreaks of Ebola virus disease (EVD) underscore the unpredictable nature of ebolavirus reemergence and the urgent need for antiviral treatments. Unfortunately, available experimental vaccines and immunotherapeutics are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against other ebolaviruses associated with EVD, including Sudan virus (SUDV) and Bundibugyo virus (BDBV). Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs), affords unprecedented effectiveness and potency as a therapeutic countermeasure to antigenically diverse ebolaviruses. MBP134AF could fully protect ferrets against lethal EBOV, SUDV, and BDBV infection, and a single 25-mg/kg dose was sufficient to protect NHPs against all three viruses. The development of MBP134AF provides a successful model for the rapid discovery and translational advancement of immunotherapeutics targeting emerging infectious diseases.


Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Ebolavirus/pathogenicity , Ferrets/virology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Animal Welfare , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/administration & dosage , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Filoviridae/immunology , Filoviridae Infections/immunology , Filoviridae Infections/prevention & control , Filoviridae Infections/virology , Glycoproteins/immunology , Guinea Pigs , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Humans , Killer Cells, Natural , Macaca , Macaca fascicularis , Male , Primates , Survival Analysis , Treatment Outcome , Viral Proteins/immunology
19.
Nature ; 563(7732): 559-563, 2018 11.
Article En | MEDLINE | ID: mdl-30464266

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Cadherins/metabolism , Orthohantavirus/physiology , Virus Internalization , Animals , Cadherins/chemistry , Cadherins/deficiency , Cadherins/genetics , Endothelial Cells/virology , Female , Orthohantavirus/pathogenicity , Hantavirus Pulmonary Syndrome/virology , Haploidy , Host-Pathogen Interactions/genetics , Humans , Lung/cytology , Male , Mesocricetus/virology , Protein Domains , Protocadherins , Sin Nombre virus/pathogenicity , Sin Nombre virus/physiology
20.
Cell ; 174(4): 938-952.e13, 2018 08 09.
Article En | MEDLINE | ID: mdl-30096313

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.


Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Ebolavirus/immunology , Epitopes/immunology , Hemorrhagic Fever, Ebola/prevention & control , Membrane Glycoproteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Immunization , Mice , Mice, Inbred BALB C , Treatment Outcome
...