Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2573, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545618

RESUMEN

Animal brains have evolved to encode social stimuli and transform these representations into advantageous behavioral responses. The commonalities and differences of these representations across species are not well-understood. Here, we show that social isolation activates an oxytocinergic (OXT), nociceptive circuit in the larval zebrafish hypothalamus and that chemical cues released from conspecific animals are potent modulators of this circuit's activity. We delineate an olfactory to subpallial pathway that transmits chemical social cues to OXT circuitry, where they are transformed into diverse outputs simultaneously regulating avoidance and feeding behaviors. Our data allow us to propose a model through which social stimuli are integrated within a fundamental neural circuit to mediate diverse adaptive behaviours.


Asunto(s)
Reacción de Prevención , Pez Cebra , Animales , Apetito , Conducta Animal , Larva/fisiología , Conducta Social , Aislamiento Social , Pez Cebra/metabolismo
2.
Nat Neurosci ; 22(9): 1477-1492, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358991

RESUMEN

Animals have evolved specialized neural circuits to defend themselves from pain- and injury-causing stimuli. Using a combination of optical, behavioral and genetic approaches in the larval zebrafish, we describe a novel role for hypothalamic oxytocin (OXT) neurons in the processing of noxious stimuli. In vivo imaging revealed that a large and distributed fraction of zebrafish OXT neurons respond strongly to noxious inputs, including the activation of damage-sensing TRPA1 receptors. OXT population activity reflects the sensorimotor transformation of the noxious stimulus, with some neurons encoding sensory information and others correlating more strongly with large-angle swims. Notably, OXT neuron activation is sufficient to generate this defensive behavior via the recruitment of brainstem premotor targets, whereas ablation of OXT neurons or loss of the peptide attenuates behavioral responses to TRPA1 activation. These data highlight a crucial role for OXT neurons in the generation of appropriate defensive responses to noxious input.


Asunto(s)
Tronco Encefálico/fisiología , Vías Nerviosas/fisiología , Nocicepción/fisiología , Nociceptores/fisiología , Animales , Tronco Encefálico/citología , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/citología , Nociceptores/citología , Oxitocina , Pez Cebra
3.
Curr Biol ; 25(11): 1526-34, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25959971

RESUMEN

The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits.


Asunto(s)
Reacción de Fuga/fisiología , Interneuronas/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente
4.
Nat Methods ; 12(11): 1039-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26778924

RESUMEN

In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal­regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.


Asunto(s)
Encéfalo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Neuritas/metabolismo , Algoritmos , Animales , Automatización , Conducta Animal , Encéfalo/fisiología , Mapeo Encefálico/métodos , Calcio/química , Inmunohistoquímica , Microscopía Confocal , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación , Análisis de Componente Principal , Reproducibilidad de los Resultados , Programas Informáticos , Natación , Pez Cebra
5.
eNeuro ; 1(1)2014.
Artículo en Inglés | MEDLINE | ID: mdl-26464963

RESUMEN

Arc is an immediate-early gene whose genetic ablation selectively abrogates long-term memory, indicating a critical role in memory consolidation. Although Arc protein is found at synapses, it also localizes to the neuronal nucleus, where its function is less understood. Nuclear Arc forms a complex with the ß-spectrin isoform ßSpIVΣ5 and associates with PML bodies, sites of epigenetic regulation of gene expression. We report here a novel interaction between Arc and Tip60, a histone-acetyltransferase and subunit of a chromatin-remodelling complex, using biochemistry and super-resolution microscopy in primary rat hippocampal neurons. Arc and ßSpIVΣ5 are recruited to nuclear Tip60 speckles, and the three proteins form a tight complex that localizes to nuclear perichromatin regions, sites of transcriptional activity. Neuronal activity-induced expression of Arc (1) increases endogenous nuclear Tip60 puncta, (2) recruits Tip60 to PML bodies, and (3) increases histone acetylation of Tip60 substrate H4K12, a learning-induced chromatin modification. These mechanisms point to an epigenetic role for Arc in regulating memory consolidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...