Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(1): e4857, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058248

RESUMEN

The 3C-like protease (3CLpro ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CLpro only functions as a homodimer, making the protein-protein interface an attractive drug target. Dimerization is partly mediated by a conserved glycine at position 11. However, some naturally occurring SARS-CoV-2 sequences contain a serine at this position, potentially disrupting the dimer. We have used concentration-dependent activity assays and mass spectrometry to show that indeed the G11S mutation reduces the stability of the dimer by 600-fold. This helps to set a quantitative benchmark for the minimum potency required of any future protein-protein interaction inhibitors targeting 3CLpro and raises interesting questions regarding how coronaviruses bearing such weakly dimerizing 3CLpro enzymes are capable of replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Péptido Hidrolasas/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Mutación , Antivirales/química
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220040, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633286

RESUMEN

We present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features. No characterized protein shares sequence homology with DfrB enzymes; how they evolved to emerge in the modern resistome is unknown. In this work, we identify DfrB homologues from a database of putative and uncharacterized proteins. These proteins include an SH3-like fold homologous to the DfrB enzymes, embedded in a variety of additional structural domains. By means of functional, structural and biophysical characterization, we demonstrate that these distant homologues and their extracted SH3-like fold can display dihydrofolate reductase activity and confer TMP resistance. We provide evidence of tetrameric assembly and catalytic mechanism analogous to that of DfrB enzymes. These results contribute, to our knowledge, the first insights into a potential evolutionary path taken by this SH3-like fold to emerge in the modern resistome following introduction of TMP. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Oxidorreductasas , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Antibacterianos , Farmacorresistencia Bacteriana
3.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 10): 354-362, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189719

RESUMEN

Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.


Asunto(s)
Proteínas Bacterianas , Factor sigma , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Cristalización , Cristalografía por Rayos X , Histidina Quinasa/metabolismo , Humanos , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Factor sigma/metabolismo , Factores de Virulencia/metabolismo
4.
J Am Chem Soc ; 144(23): 10230-10240, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647706

RESUMEN

Lanthipeptide synthetases construct macrocyclic peptide natural products by catalyzing an iterative cascade of post-translational modifications. Class II lanthipeptide synthetases (LanM enzymes) catalyze multiple rounds of peptide dehydration and thioether macrocycle formation in a manner that guides precursor peptide maturation to the biologically active final product with high fidelity. The mechanistic details underlying the contradictory phenomena of substrate flexibility coupled with high biosynthetic fidelity have proven challenging to illuminate. In this work, we employ mass spectrometry to investigate how the structure of a maturing precursor lanthipeptide (HalA2) influences the local and global structure of its cognate lanthipeptide synthetase (HalM2). Using enzymatically synthesized HalA2 peptides that contain sets of native thioether macrocycles, we employ ion mobility mass spectrometry (IM-MS) to show that HalA2 macrocyclization alters the conformational landscape of the HalM2 enzyme in a systematic manner. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies show that local HalM2 structural dynamics also change in response to HalA2 post-translational modification. Notably, deuterium uptake in a critical HalM2 α-helical region depends on the number of thioether macrocycles present in the HalA2 core peptide. Binding of the isolated leader and core peptide portions of the modular HalA2 precursor led to a synergistic structuring of this α-helical region, providing evidence for distinct leader and core peptide binding sites that independently alter the dynamics of this functionally critical α-helix. The data support a mechanistic model where the sequential post-translational modification of HalA2 alters the conformational dynamics of HalM2 in regions of the enzyme that are known to be functionally critical.


Asunto(s)
Bacteriocinas , Ligasas , Bacteriocinas/química , Deuterio , Ligasas/metabolismo , Péptidos , Sulfuros
5.
Biochemistry ; 60(19): 1506-1519, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33887902

RESUMEN

Lanthipeptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These genetically encoded peptides are biosynthesized by multifunctional enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity and catalyze iterative rounds of post-translational modification. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These "biophysical" processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native mass spectrometry coupled to ion mobility (native IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its noncovalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes native IM-MS as a versatile approach for characterizing intermolecular interactions and for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.


Asunto(s)
Bacteriocinas/metabolismo , Espectrometría de Movilidad Iónica/métodos , Ligasas/metabolismo , Secuencia de Aminoácidos , Bacteriocinas/química , Catálisis , Ligasas/química , Espectrometría de Masas/métodos , Conformación Molecular , Péptidos/química , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...