Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Talanta ; 269: 125402, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37979510

The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.


Aconitum , Alkaloids , Aconitine/analysis , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Alkaloids/analysis , Perfusion , Aconitum/chemistry , Quality Control
2.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3826-3838, 2023 Jul.
Article Zh | MEDLINE | ID: mdl-37475074

This study aimed to characterize and identify the non-volatile components in Pogostemonis Herba by using ultra-perfor-mance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with UNIFI and an in-house library. The chemical components in 50% methanol extract of Pogostemonis Herba were detected by UPLC-Q-TOF-MS in both positive and negative MS~E continuum modes. Then, the MS data were processed in UNIFI combined with an in-house library to automatically characterize the metabolites. Based on the multiple adduct ions, exact mass, diagnostic fragment ions, and peak intensity of compounds and the fragmentation pathways and retention behaviors of reference substances, the structures identified by UNIFI were further verified and those of the unidentified compounds were tentatively elucidated. A total of 120 compound structures were identified or tentatively identified, including flavonoids, phenylpropanoids, phenolic acids, terpenes, fatty acids, alkaloids, and phenylethanoid glycosides. Sixteen of them were accurately identified by comparison with reference substances, and 53 compounds were reported the first time for Pogostemonis Herba. This study systematically characterized and identified the non-volatile compounds in Pogostemonis Herba for the first time. The findings provide a scientific basis for revealing the pharmacodynamic material basis, establishing a quality control system, and developing products of Pogostemonis Herba.


Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Glycosides , Ions
3.
J Pharm Anal ; 13(3): 296-304, 2023 Mar.
Article En | MEDLINE | ID: mdl-37102106

The rapid and accurate authentication of traditional Chinese medicines (TCMs) has always been a key scientific and technical problem in the field of pharmaceutical analysis. Herein, a novel heating online extraction electrospray ionization mass spectrometry (H-oEESI-MS) was developed for the rapid and direct analysis of extremely complex substances without the requirement for any sample pretreatment or pre-separation steps. The overall molecular profile and fragment structure features of various herbal medicines could be completely captured within 10-15 s, with minimal sample (<0.5 mg) and solvent consumption (<20 µL for one sample). Furthermore, a rapid differentiation and authentication strategy for TCMs based on H-oEESI-MS was proposed, including metabolic profile characterization, characteristic marker screening and identification, and multivariate statistical analysis model validation. In an analysis of 52 batches of seven types of Aconitum medicinal materials, 20 and 21 key compounds were screened out as the characteristic markers of raw and processed Aconitum herbal medicines, respectively, and the possible structures of all the characteristic markers were comprehensively identified based on Compound Discoverer databases. Finally, multivariate statistical analysis showed that all the different types of herbal medicines were well differentiated and identified (R2X > 0.87, R2Y > 0.91, and Q2 > 0.72), which further verified the feasibility and reliability of this comprehensive strategy for the rapid authentication of different TCMs based on H-oEESI-MS. In summary, this rapid authentication strategy realized the ultra-high-throughput, low-cost, and standardized detection of various complex TCMs for the first time, thereby demonstrating wide applicability and value for the development of quality standards for TCMs.

4.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Article En | MEDLINE | ID: mdl-37094153

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Quercetin/pharmacology , Anti-Inflammatory Agents/pharmacology , Molecular Docking Simulation
...