Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38781061

RESUMEN

Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices. Our experimental results demonstrate the ability of SSVEP-DAN to transform existing source SSVEP data into supplementary calibration data. This results in a significant improvement in SSVEP decoding accuracy while reducing the calibration time. We envision SSVEP-DAN playing a crucial role in future applications of high-performance SSVEP-based BCIs. The source code for this work is available at: https://github.com/CECNL/SSVEP-DAN.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Adulto , Femenino , Redes Neurales de la Computación , Adulto Joven , Calibración , Reproducibilidad de los Resultados
2.
Artículo en Inglés | MEDLINE | ID: mdl-38082873

RESUMEN

Functional near infrared spectroscopy (fNIRS) is a neuroimaging technique that has grown vigorously in recent years. With noticeable attention, machine learning methods have also been applied to fNIRS. However, the current approach lacks interpretability of the results. In recent years, the utilization and investigation of fNIRS have experienced significant growth and are now being utilized in clinical research. However, the collection of clinical fNIRS data is limited in sample size. Therefore, our aim is to utilize the collected fNIRS data from all channels and achieve interpretable analysis results with minimal human manipulation, channel selection or feature extraction. We developed an fNIRS-based interpretable model and used class-specific gradient information to visualize the biomarkers captured by the model via locating the important region. The accuracy of our model's classification was 6% higher than that of the conventional SVM method under within-subject classification. The model focuses on signals from the left brain in the classification of right-hand finger tapping task, while in the task of classifying left-handed movements, the model relies on signals from the right brain. These results were consistent with current understanding of physiology.Clinical Relevance- The machine learning-based fNIRS model has the potential to be used for the diagnosis and prediction of therapeutic efficacy in clinical settings.


Asunto(s)
Encéfalo , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Mano , Corteza Cerebral
3.
Artículo en Inglés | MEDLINE | ID: mdl-38083335

RESUMEN

The recent development of closed-loop EEG phase-triggered transcranial magnetic stimulation (TMS) has advanced potential applications of adaptive neuromodulation based on the current brain state. Closed-loop TMS involves instantaneous acquisition of the EEG rhythm, timing prediction of the target phase, and triggering of TMS. However, the accuracy of EEG phase prediction algorithms is largely influenced by the system's transport delay, and their relationship is rarely considered in related work. This paper proposes a delay analysis that considers the delay of the closed-loop EEG phase-triggered TMS system as a primary factor in the validation of phase prediction algorithms. An in-silico validation using real EEG data was performed to compare the performance of commonly used algorithms. The experimental results indicate a significant influence of the total delay on the algorithm performance, and the performance ranking among algorithms varies at different levels of delay. We conclude that the delay analysis framework should be widely adopted in the design and validation of phase prediction algorithms for closed-loop EEG phase-triggered TMS systems.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Encéfalo/fisiología , Algoritmos
5.
J Neural Eng ; 18(1)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33203813

RESUMEN

Objective. This study aims to establish a generalized transfer-learning framework for boosting the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) by leveraging cross-domain data transferring.Approach. We enhanced the state-of-the-art template-based SSVEP decoding through incorporating a least-squares transformation (LST)-based transfer learning to leverage calibration data across multiple domains (sessions, subjects, and electroencephalogram montages).Main results. Study results verified the efficacy of LST in obviating the variability of SSVEPs when transferring existing data across domains. Furthermore, the LST-based method achieved significantly higher SSVEP-decoding accuracy than the standard task-related component analysis (TRCA)-based method and the non-LST naive transfer-learning method.Significance. This study demonstrated the capability of the LST-based transfer learning to leverage existing data across subjects and/or devices with an in-depth investigation of its rationale and behavior in various circumstances. The proposed framework significantly improved the SSVEP decoding accuracy over the standard TRCA approach when calibration data are limited. Its performance in calibration reduction could facilitate plug-and-play SSVEP-based BCIs and further practical applications.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Algoritmos , Electroencefalografía/métodos , Humanos , Aprendizaje Automático , Estimulación Luminosa
6.
IEEE J Biomed Health Inform ; 25(6): 1915-1925, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32960770

RESUMEN

Recently, the advances in passive brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have shed light on real-world neuromonitoring technologies. However, human variability in the EEG activities hinders the development of practical applications of EEG-based BCI. To tackle this problem, many transfer-learning techniques perform supervised calibration. This kind of calibration approach requires task-relevant data, which is impractical in real-life scenarios such as drowsiness during driving. This study presents a transfer-learning framework for EEG decoding based on the low-dimensional representations of subjects learned from the pre-trial EEG. Tensor decomposition was applied to the pre-trial EEG of subjects to extract the underlying characteristics in subject, spatial, and spectral domains. Then, the proposed framework assessed the characteristics to obtain the low-dimensional subject representations such that the subjects with similar brain dynamics can be identified. This method can leverage the existing data from other users, and a small number of data from a rapid, non-task, unsupervised calibration from a new user to build an accurate BCI. Our results demonstrated that, in terms of prediction accuracy, the proposed low-dimensional subject representation-based transfer learning (LDSR-TL) framework outperformed the random selection, and the Riemannian manifold approach in cognitive-state tracking, while requiring fewer training data. The results can greatly improve the practicability, and usability of EEG-based BCI in the real world.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Encéfalo , Electroencefalografía , Humanos , Aprendizaje Automático
7.
IEEE Trans Biomed Eng ; 67(4): 1105-1113, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31329104

RESUMEN

OBJECTIVE: This paper proposes a novel device-to-device transfer-learning algorithm for reducing the calibration cost in a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) speller by leveraging electroencephalographic (EEG) data previously acquired by different EEG systems. METHODS: The transferring is done by projecting the scalp-channel EEG signals onto a shared latent domain across devices. Three spatial filtering techniques, including channel averaging, canonical correlation analysis (CCA), and task-related component analysis (TRCA), were employed to extract the shared responses from different devices. The transferred data were integrated into a template-matching-based algorithm to detect SSVEPs. To evaluate its transferability, this paper conducted two sessions of simulated online BCI experiments with ten subjects using 40 visual stimuli modulated by joint frequency-phase coding method. In each session, two different EEG devices were used: first, the Quick-30 system (Cognionics, Inc.) with dry electrodes, and second, the ActiveTwo system (BioSemi, Inc.) with wet electrodes. RESULTS: The proposed method with CCA- and TRCA-based spatial filters achieved significantly higher classification accuracy compared with the calibration-free standard CCA-based method. CONCLUSION: This paper validated the feasibility and effectiveness of the proposed method in implementing calibration-free SSVEP-based BCIs. SIGNIFICANCE: The proposed method has great potentials to enhance practicability and usability of real-world SSVEP-based BCI applications by leveraging user-specific data recorded in previous sessions even with different EEG systems and montages.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Algoritmos , Calibración , Electroencefalografía , Humanos , Estimulación Luminosa
8.
Neuroimage ; 174: 407-419, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29578026

RESUMEN

Inter- and intra-subject variability pose a major challenge to decoding human brain activity in brain-computer interfaces (BCIs) based on non-invasive electroencephalogram (EEG). Conventionally, a time-consuming and laborious training procedure is performed on each new user to collect sufficient individualized data, hindering the applications of BCIs on monitoring brain states (e.g. drowsiness) in real-world settings. This study proposes applying hierarchical clustering to assess the inter- and intra-subject variability within a large-scale dataset of EEG collected in a simulated driving task, and validates the feasibility of transferring EEG-based drowsiness-detection models across subjects. A subject-transfer framework is thus developed for detecting drowsiness based on a large-scale model pool from other subjects and a small amount of alert baseline calibration data from a new user. The model pool ensures the availability of positive model transferring, whereas the alert baseline data serve as a selector of decoding models in the pool. Compared with the conventional within-subject approach, the proposed framework remarkably reduced the required calibration time for a new user by 90% (18.00 min-1.72 ±â€¯0.36 min) without compromising performance (p = 0.0910) when sufficient existing data are available. These findings suggest a practical pathway toward plug-and-play drowsiness detection and can ignite numerous real-world BCI applications.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Desempeño Psicomotor , Vigilia , Ondas Encefálicas , Interfaces Cerebro-Computador , Calibración , Análisis por Conglomerados , Humanos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
9.
IEEE Trans Neural Syst Rehabil Eng ; 26(2): 400-406, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29432111

RESUMEN

Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Vigilia/fisiología , Conducción de Automóvil/psicología , Cognición/fisiología , Análisis Discriminante , Electrodos , Cabello , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Cuero Cabelludo , Máquina de Vectores de Soporte
10.
IEEE Trans Neural Syst Rehabil Eng ; 25(1): 11-18, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27254871

RESUMEN

Steady state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has gained a lot of attention due to its robustness and high information transfer rate (ITR). However, transitioning well-controlled laboratory-oriented BCI demonstrations to real-world applications poses severe challenges for this exciting field. For instance, conducting BCI experiments usually requires skilled technicians to abrade the area of skin underneath each electrode and apply an electrolytic gel or paste to acquire high-quality SSVEPs from hair-covered areas. Our previous proof-of-concept study has proposed an alternative approach that employed electroencephalographic signals collected from easily accessible non-hair-bearing areas including neck, behind the ears, and face to realize an SSVEP-based BCI. The study results showed that, with proper electrode placements and advanced signal-processing algorithms, the SSVEPs measured from non-hair-bearing areas in off-line SSVEP experiments could achieve comparable SNR to that obtained from the hair-bearing occipital areas. This study extended the previous work to systematically investigate the costs and benefits of non-hair SSVEPs. Furthermore, this study developed and evaluated an online BCI system based solely on non-hair EEG signals. A 12-target identification task was employed to quantitatively assess the performance of the online SSVEP-based BCI system. All subjects successfully completed the tasks using non-hair SSVEPs with 84.08 ± 15.60% averaged accuracy and 30.21 ± 10.61 bits/min averaged ITR. The empirical results of this study demonstrated the practicality of implementing an SSVEP-based BCI based on signals from non-hair-bearing areas, significantly improving the feasibility and practicality of real-world BCIs.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/instrumentación , Potenciales Evocados Visuales/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Electroencefalografía/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Cabello , Humanos , Masculino , Sistemas en Línea , Estimulación Luminosa/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de Tareas
11.
Artículo en Inglés | MEDLINE | ID: mdl-26737815

RESUMEN

Recent advances in mobile electroencephalogram (EEG) acquisition based on dry electrodes have started moving Brain-Computer Interface (BCI) applications from well-controlled laboratory settings to real-world environments. However, the application mechanisms and high impedance of dry electrodes over the hair-covered areas remain challenging for everyday use of BCI. In addition, whole-scalp recordings are not always necessary or applicable due to various practical constrains. Therefore, alternative montages for EEG recordings to meet the everyday needs are in-demand. Inspired by our previous work on measuring non-hair-bearing steady state visual evoked potentials for BCI applications, this study explores the feasibility and efficacy of detecting cognitive lapses of participants based on EEG signals collected from the non-hair-bearing areas. Study results suggest that informative EEG features associated with lapses could be assessed from non-hair-bearing areas with comparable accuracy obtained from the whole-scalp EEG. The design principles, validation processes and promising findings reported in this study may enable and/or facilitate numerous BCI applications in real-world environments.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Cabello/fisiología , Cuero Cabelludo/fisiología , Electrodos , Humanos
12.
Front Neurosci ; 8: 321, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25352773

RESUMEN

In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

13.
Front Hum Neurosci ; 8: 182, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744718

RESUMEN

Recent advances in mobile electroencephalogram (EEG) systems, featuring non-prep dry electrodes and wireless telemetry, have enabled and promoted the applications of mobile brain-computer interfaces (BCIs) in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials (SSVEPs), which is one of promising channels for functioning BCI systems, recorded using a mobile EEG system under challenging recording conditions, e.g., walking. To systematically explore the effects of walking locomotion on the SSVEPs, this study instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile (s) per hour (MPH) while concurrently perceiving visual flickers (11 and 12 Hz). Empirical results of this study showed that the SSVEP amplitude tended to deteriorate when subjects switched from standing to walking. Such SSVEP suppression could be attributed to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from standing (84.87 ± 13.55%) to walking (1 MPH: 83.03 ± 13.24%, 2 MPH: 79.47 ± 13.53%, and 3 MPH: 75.26 ± 17.89%). These findings not only demonstrated the applicability and limitations of SSVEPs recorded from freely behaving humans in realistic environments, but also provide useful methods and techniques for boosting the translation of the BCI technology from laboratory demonstrations to practical applications.

14.
Artículo en Inglés | MEDLINE | ID: mdl-21096880

RESUMEN

Movement-related changes such as event-related desynchronizationcan (ERD) and event-related synchronization (ERS) can be found in human subthalamic nucleus (STN) with analysis on local field potentials (LFP) recorded from Parkinson's disease (PD) patients. Besides traditional time-frequency (TF) analysis, we introduced nonlinear analysis, bispectral and approximate entropy (ApEn), to measure the signal nonlinear correlation and regularity in neural activities. Movement-related changes were found in the beta band, bicoherence and ApEn, and variation during stationary movement is more available by nonlinear methods. Therefore, we suggest nonlinear analysis for further related studies.


Asunto(s)
Potenciales Evocados , Dinámicas no Lineales , Enfermedad de Parkinson/fisiopatología , Anciano , Estimulación Encefálica Profunda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...