Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 34(9): e2106172, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34816497

RESUMEN

Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe3 GeTe2 (FGT) integrated with Bi2 Te3 as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA