Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Surg Res ; 19(1): 50, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195468

RESUMEN

BACKGROUND: Emerging proofs have shown that differentially expressed circular RNAs (circRNAs) are closely associated with the pathophysiological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-exosomes have been demonstrated to possess favorable therapeutic effects in diseases. Herein, this work aimed to investigate the action of circ_0006640 transferred by MSC-exosomes functional recovery after SCI. METHODS: SCI animal models were established by spinal cord contusion surgery in mice and lipopolysaccharide (LPS)-stimulated mouse microglial cell line BV2. Levels of genes and proteins were detected by qRT-PCR and Western blot. Properties of BV2 cells were characterized using CCK-8 assay, flow cytometry and ELISA analysis. The oxidative stress was evaluated. Dual-luciferase reporter assay was used for verifying the binding between miR-382-5p and circ_0006640 or IGF-1 (Insulin-like Growth Factor 1). Exosome separation was conducted by using the commercial kit. RESULTS: Circ_0006640 expression was lower in SCI mice and LPS-induced microglial cells. Circ_0006640 overexpression protected microglial cells from LPS-induced apoptotic, inflammatory and oxidative injury. Mechanistically, circ_0006640 directly sponged miR-382-5p, which targeted IGF-1. MiR-382-5p was increased, while IGF-1 was decreased in SCI mice and LPS-induced microglial cells. Knockdown of miR-382-5p suppressed apoptosis, inflammation and oxidative stress in LPS-induced microglial cells, which were reversed by IGF-1 deficiency. Moreover, miR-382-5p up-regulation abolished the protective functions of circ_0006640 in LPS-induced microglial cells. Additionally, circ_0006640 was packaged into MSC-exosomes and could be transferred by exosomes. Exosomal circ_0006640 also had protective effects on microglial cells via miR-382-5p/IGF-1 axis. CONCLUSION: Circ_0006640 transferred by BMSC-exosomes suppressed LPS-induced apoptotic, inflammatory and oxidative injury via miR-382-5p/IGF-1 axis, indicating a new insight into the clinical application of exosomal circRNA-based therapeutic in the function recovery after SCI.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Ratones , Lipopolisacáridos/toxicidad , Factor I del Crecimiento Similar a la Insulina , Médula Ósea , Estrés Oxidativo , MicroARNs/genética
2.
RSC Adv ; 13(13): 8915-8922, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936854

RESUMEN

One of the most promising strategies for producing hydrogen is photocatalytic water splitting, in which the photocatalyst is a key component. Among many semiconductor photocatalysts, g-C3N4 has attracted great attention due to its narrow band gap, excellent stability and low cost. However, practical application is limited by its poor intrinsic activity. In this work, a high-performance porous g-C3N4 (PCN) photocatalyst with anchored Cu single atoms (CuSAs) was synthesized by a one-step co-heating approach. The obtained Cu1.5-PCN displays an excellent hydrogen evolution rate (HER) of 2142.4 µmol h-1 g-1 under visible light (=420 nm), which is around 15 and 109 times higher than those of PCN and bulk g-C3N4, respectively. In addition, it also shows good stability during H2 evolution. The results of experimental research and DFT simulations indicate that the single Cu ions formed bonds with the N-ring and these remain stable. Meanwhile, the special electronic structure of the Cu-N charge bridge extends the light absorption band to the visible-light region (380-700 nm). This high-performance and low-cost photocatalyst has great potential in solar energy conversion.

3.
Contrast Media Mol Imaging ; 2022: 6005914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017026

RESUMEN

A stroke is a sudden onset cerebral blood circulation disorder. It occurs in patients with cerebrovascular disease due to various predisposing factors causing stenosis, occlusion, or rupture of intracerebral arteries, which, in turn, causes acute cerebral blood circulation disturbance and clinically manifests as symptoms and signs of excessive or permanent cerebral dysfunction. It can cause serious harm to patients' physical and mental health. This study aimed to evaluate the effect of Breathe-Link breathing trainers on lung function and the ability to perform activities of daily living in patients with stroke. Sixty patients with stroke were randomly divided into two groups. One group was set as the control group and received routine breathing training. The experimental group received a Breathe-Link trainer based on regular training, with rehabilitation training for 12 weeks as the time node. Respiratory muscle strength, respiratory velocity, respiratory capacity, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and rate in the first second (FEV1/FVC) were used to evaluate the respiratory function of patients, and the Barthel index was used to evaluate the ability to perform activities of daily living. Improvements in respiratory function and daily living ability were compared between the two groups. After 12 weeks of training, respiratory muscle strength, respiratory velocity, respiratory volume, FVC, FEV1, FEV1/FVC, and Barthel index of patients in the two groups improved compared with those before training (P < 0.05), and the improvement in the treatment group was better than that in the control group (P < 0.05). Breathe-Link breathing trainers can improve lung function and the ability to perform activities of daily living in patients with stroke, and its effect is acceptable. It can be recommended for clinical use.


Asunto(s)
Calidad de Vida , Accidente Cerebrovascular , Actividades Cotidianas , Ejercicios Respiratorios , Humanos , Pulmón , Accidente Cerebrovascular/terapia , Ventiladores Mecánicos
4.
Nanoscale ; 13(4): 2573-2584, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33480939

RESUMEN

Binder-free electrodes for supercapacitors have attracted much attention as no additive is required in their preparation processes. Herein, a hybrid metal oxide composed of graphene oxide (Co3O4/MnO2/GO) was successfully prepared. Briefly, electrochemical deposition and sintering were applied to grow Co3O4 nanosheets on nickel foam. Subsequently, MnO2 nanosheets were deposited on Co3O4 nanosheets via the thermal decomposition of a KMnO4 aqueous solution. Finally, graphene oxide was added to improve the performance of the composite. Particularly, the as-obtained Co3O4/MnO2/GO sample grown on nickel foam possessed a ternary nanosheet structure, and when applied as a binder-free electrode in a supercapacitor, it exhibited an excellent electrochemical performance. Firstly, the electrode exhibited an ultrahigh capacitance value of 2928 F g-1 at 1 A g-1 in a three-electrode system. Besides, the electrode showed a promising rate performance of 853 F g-1 at a high current density of 20 A g-1. Moreover, the electrode displayed a relatively high energy density of 97.92 W h kg-1 at a power density of 125 W kg-1 and long cycle life of 93% retention after 5000 cycles at 10 A g-1 in a two-electrode system. Thus, all the electrochemical tests suggest that the Co3O4/MnO2/GO binder-free electrode is a potential candidate for energy storage.

5.
RSC Adv ; 11(7): 4276-4285, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35424361

RESUMEN

Graphitic carbon nitride, as a very promising two-dimensional structure host for single atom catalysts (SACs), has been studied extensively due to its significant confinement effects of single atoms for photocatalytic applications. In this work, a systematic investigation of g-C3N4 confining noble metal single atoms (NM1@g-C3N4) will be performed by using DFT calculations. The geometric structure calculations indicate that the most favorable anchored sites for the NM1 is located in the six-fold cavity, and the deformed wrinkle space of g-C3N4 helps the NM1 to be stabilized in the six-fold cavity. The electronic structure calculations show that the conduction band of NM1@g-C3N4 moved down and crossed through the Fermi level, resulting in narrowing the band gap of the NM1@g-C3N4. Moreover, the confined NM1 provide a new channel of charge transport between adjacent heptazine units, resulting in a longer lifetime of photo-generated carriers except Ru, Rh, Os and Ir atoms. Furthermore, the d-band centres of NM1 in NM1@g-C3N4 show that Rh1@, Pd1@, Ir1@ and Pt1@g-C3N4 SACs may have better photocatalytic performance than other NM1@g-C3N4 SACs. Finally, Pt1@g-C3N4 SACs are considered to have higher photocatalytic activity than other NM1@g-C3N4 SACs. These results demonstrate that the confinement effects of noble metals on monolayer g-C3N4 not only makes the single atom more stable to be anchored on g-C3N4, but also enhances the photocatalytic activity of the system through the synergistic effect between the confined NM1 and the monolayer g-C3N4. These detailed research may provide theoretical support for engineers to prepare photocatalysts with higher activity.

6.
ACS Appl Mater Interfaces ; 12(38): 42962-42970, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32875790

RESUMEN

Triethylamine is extremely harmful to human health, and chronic inhalation can lead to respiratory and hematological diseases and eye lesions. Hence, it is essential to develop a triethylamine gas-sensing technology with high response, selectivity, and stability for use in healthcare and environmental monitoring. In this work, a simple and low-cost sensor based on the Pt- and Ce-modified In2O3 hollow structure to selectively detect triethylamine is developed. The experimental results reveal that the sensor based on 1% Pt/Ce12In exhibits excellent triethylamine-sensing performance, including its insusceptibility to water, reduced operating temperature, enhanced response, and superior long-term stability. This work suggests that the enhancement of sensing performance toward triethylamine can be attributed to the high relative contents of OV and OC, large specific surface area, catalytic effect, the electronic sensitization of Pt, and the reversible redox cycle properties of Ce. This sensor represents a unique and highly sensitive means to detect triethylamine, which shows great promise for potential applications in food safety inspection and environmental monitoring.

7.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486219

RESUMEN

Carbon materials have been widely used as electrode materials for supercapacitors, while the current carbon precursors are mainly derived from fossil fuels. Biomass-derived carbon materials have become new and effective materials for electrodes of supercapacitors due to their sustainability, low pollution potential, and abundant reserves. Herein, we present a new biomass carbon material derived from water hyacinth by a novel activation method (combination of KOH and HNO3 activation). According to the electrochemical measurements, the material presents an ultrahigh capacitance of 374 F g-1 (the current density is 1 A g-1). Furthermore, the material demonstrates excellent rate performance (105 F g-1 at a higher density of 20 A g-1) and ideal cycling stability (87.3% capacity retention after 5000 times charge-discharge at 2 A g-1). When used for a symmetrical supercapacitor device, the material also shows a relatively high capacity of 330 F g-1 at 1 A g-1 (a two-electrode system). All measurements suggest the material is an effective and noteworthy material for the electrodes of supercapacitors.

8.
Nanoscale Res Lett ; 14(1): 365, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31807936

RESUMEN

Formaldehyde (HCHO) is the main source of indoor air pollutant. HCHO sensors are therefore of paramount importance for timely detection in daily life. However, existing sensors do not meet the stringent performance targets, while deactivation due to sensing detection at room temperature, for example, at extremely low concentration of formaldehyde (especially lower than 0.08 ppm), is a widely unsolved problem. Herein, we present the Ag nanoparticles (Ag NPs) sensitized dispersed In2O3 nanograin via a low-fabrication-cost hydrothermal strategy, where the Ag NPs reduces the apparent activation energy for HCHO transporting into and out of the In2O3 nanoparticles, while low concentrations detection at low working temperature is realized. The pristine In2O3 exhibits a sluggish response (Ra/Rg = 4.14 to 10 ppm) with incomplete recovery to HCHO gas. After Ag functionalization, the 5%Ag-In2O3 sensor shows a dramatically enhanced response (135) with a short response time (102 s) and recovery time (157 s) to 1 ppm HCHO gas at 30 °C, which benefits from the Ag NPs that electronically and chemically sensitize the crystal In2O3 nanograin, greatly enhancing the selectivity and sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...