Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 343: 112074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548138

RESUMEN

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Asunto(s)
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Plantas Modificadas Genéticamente/genética
2.
Plant Mol Biol ; 114(1): 9, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315324

RESUMEN

To select poplar clones with excellent adventitious roots development (ARD) and deepen the understanding of its molecular mechanism, a comprehensive evaluation was conducted on 38 Populus germplasm resources with cuttings cultured in the greenhouse. Genetic differences between poplar clones with good ARD and with poor ARD were explored from the perspectives of genomics and transcriptomics. By cluster analysis of the seven adventitious roots (AR) traits, the materials were classified into three clusters, of which cluster I indicated excellent AR developmental capability and promising breeding potential, especially P.×canadensis 'Guariento', P. 'jingtong1', P. deltoides 'Zhongcheng5', P. deltoides 'Zhongcheng2'. At the genomic level, the cross-population composite likelihood ratio (XP-CLR) analysis identified 1944 positive selection regions related to ARD, and variation detection analysis identified 3426 specific SNPs and 687 specific Indels in the clones with good ARD, 3212 specific SNPs and 583 specific Indels in the clones with poor ARD, respectively. Through XP-CLR, variation detection, and weighted gene co-expression network analysis based on transcriptome data, eight major putative genes associated with poplar ARD were primary identified, and a co-expression network of eight genes was constructed, it was discovered that CSD1 and WRKY6 may be important in the ARD. Subsequently, we confirmed that SWEET17 had a non-synonymous mutation at the site of 928,404 in the clones with poor ARD, resulting in an alteration of the amino acid. After exploring phenotypic differences and the genetic variation of adventitious roots development in different poplar clones, this study provides valuable reference information for future poplar breeding and genetic improvement.


Asunto(s)
Populus , Populus/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Fenotipo , Raíces de Plantas/genética
3.
Hortic Res ; 11(1): uhad255, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274646

RESUMEN

Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.

4.
PeerJ ; 10: e12718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35070502

RESUMEN

With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.


Asunto(s)
Oryza , Poaceae , Oryza/genética , Filogenia , Poaceae/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Proteínas Quinasas/metabolismo , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884720

RESUMEN

Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/biosíntesis , Poaceae/enzimología , Estrés Fisiológico , Oxidorreductasas de Alcohol/genética , Dimerización , Poaceae/genética , Multimerización de Proteína
6.
Front Plant Sci ; 12: 788895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154183

RESUMEN

Bamboo, being an ornamental plant, has myriad aesthetic and economic significance. Particularly, Phyllostachys violascens cv. Viridisulcata contains an internode color phenotype in variation in green and yellow color between the sulcus and culm, respectively. This color variation is unique, but the underlying regulatory mechanism is still unknown. In this study, we used metabolomic and transcriptomic strategies to reveal the underlying mechanism of variation in internode color. A total of 81 metabolites were identified, and among those, prunin as a flavanone and rhoifolin as a flavone were discovered at a high level in the culm. We also found 424 differentially expressed genes and investigated three genes (PvGL, PvUF7GT, and PvC12RT1) that might be involved in prunin or rhoifolin biosynthesis. Their validation by qRT-PCR confirmed high transcript levels in the culm. The results revealed that PvGL, PvUF7GT, and PvC12RT1 might promote the accumulation of prunin and rhoifolin which were responsible for the variation in internode color of P. violascens. Our study also provides a glimpse into phenotypic coloration and is also a valuable resource for future studies.

7.
Front Plant Sci ; 8: 1526, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28951734

RESUMEN

Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...