Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 43(4): 1033-1045, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34188177

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal tumours worldwide. However, the effects of first-line sorafenib treatment in advanced HCC fail to prolong patients' survival due to the highly heterogeneous characteristics of HCC etiology. Cyclin-dependent kinase 9 (CDK9) is an important target in the continuous development of cancer therapy. Here, we demonstrate that CDK9 is closely associated with the progression of HCC and can serve as an HCC therapeutic target by modulating the recovery of wild-type p53 (wt-p53) function. We prove that mouse double minute 2 homologue (MDM2) and Sirtuin 1 (SIRT1) are phosphorylated by CDK9 at Ser166 and Ser47, respectively. Inhibition of CDK9 not only reduces the MDM2-mediated ubiquitination and degradation of wt-p53 but also increases wt-p53 stability by suppressing deacetylase activity of SIRT1. Thus, inhibition of CDK9 promotes the wt-p53 stabilization and prevents HCC progression. However, excessive inhibition by high concentrations of specific CDK9 inhibitors counteracts the promotion of p53 stability and reduces their anti-HCC activity because of extreme general transcription repression. The effects of a novel CDK9 inhibitor named oroxylin A (OA) from Scutellaria baicalensis are explored, with the results indicating that OA shows moderate and controlled inhibition of CDK9 activity and expression, and stabilizes wt-p53 by inhibiting CDK9-regulated MDM2 and SIRT1 signaling. These outcomes indicate the high therapeutic potential of OA against HCC and its low toxicity in normal tissue. This study demonstrates a novel mechanism for the regulation of wt-p53 by CDK9 and indicates that OA is a potential candidate for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Carcinoma Hepatocelular/patología , Quinasa 9 Dependiente de la Ciclina/metabolismo , Flavonoides , Humanos , Neoplasias Hepáticas/patología , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Genes Genomics ; 42(1): 25-39, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31677128

RESUMEN

BACKGROUND: Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops. OBJECTIVE: This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow-green leaf sesame mutant Siyl-1. METHODS: We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type. RESULTS: Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellow-green mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group. CONCLUSION: The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.


Asunto(s)
Clorofila/genética , Mutación , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Proteoma/análisis , Sesamum/metabolismo , Cloroplastos , Mapeo Cromosómico , Cromosomas de las Plantas , Color , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesamum/genética , Sesamum/crecimiento & desarrollo
3.
Artículo en Inglés | MEDLINE | ID: mdl-24974652

RESUMEN

Yersinia enterocolitica (YE) is a main pathogenic bacterium causing diarrhea and yersiniosis occurs in both developed and developing countries with high incidence. YE in contaminated food is able to survive for a long duration even under cold storage, thereby enhancing the risk of food infection. In this study, a new loop-mediated isothermal amplification (LAMP) method showing the characteristics of simplicity, rapidity, high specificity and sensitivity was established by targeting outL of pathogenic YE. Two inner-primers and outer-primers were designed and LAMP reaction was optimized for Mg2+, betaine, dNTPs and inner primers concentrations, reaction temperature and time. Sensitivity and specificity of the LAMP assay was evaluated using YE genomic DNA and those of 44 different bacteria strains, respectively. Validation of LAMP detection method was by employing meat samples spiked with varying CFU of YE. The optimized LAMP assay was specific, capable of detecting 97 fg of genomic DNA (equivalent to 37 genome copies) of YE (100-fold more sensitive than PCR) and 80 CFU/ml of YE-spiked meat samples based on ethidium bromide stained amplicon bands on agarose gel-electrophoresis and on GelRed fluorescence of the LAMP reaction solution, respectively. This rapid, sensitive and specific LAMP technique should enable application in field inspection of Y. enterocolitica in food.


Asunto(s)
Carne/microbiología , Técnicas de Amplificación de Ácido Nucleico , Yersinia enterocolitica/aislamiento & purificación , Animales , Bovinos , Electroforesis en Gel de Agar , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...