Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(23): 9724-9731, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38814145

RESUMEN

Developing novel electrocatalysts for achieving high selectivity and faradaic efficiency in the carbon dioxide reduction reaction (CO2RR) poses a major challenge. In this study, a catalyst featuring a nitrogen-doped carbon shell-coated Ni nanoparticle structure is designed for efficient carbon dioxide (CO2) electroreduction to carbon monoxide (CO). The optimal Ni@NC-1000 catalyst exhibits remarkable CO faradaic efficiency (FECO) values exceeding 90% across a broad potential range of -0.55 to -0.9 V (vs. RHE), and attains the maximum FECO of 95.6% at -0.75 V (vs. RHE) in 0.5 M NaHCO3. This catalyst exhibits sustained carbon dioxide electroreduction activity with negligible decay after continuous electrolysis for 20 h. More encouragingly, a substantial current density of 200.3 mA cm-2 is achieved in a flow cell at -0.9 V (vs. RHE), reaching an industrial-level current density. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that its excellent catalytic performance is attributed to highly active pyrrolic nitrogen sites, promoting CO2 activation and significantly reducing the energy barrier for generating *COOH. To a considerable extent, this work presents an effective strategy for developing high-efficiency catalysts for electrochemical CO2 reduction across a wide potential window.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38662414

RESUMEN

Atomically precise metal nanoclusters (NCs) present new opportunities for creating innovative solar-powered photoanodes due to their extraordinary physicochemical properties. Nevertheless, ultrasmall metal NCs tend to aggregate and lack active sites under light irradiation, which severely limits their widespread application. We have developed a strategy to design efficient ternary photoanodes by successively modifying AgAu NCs and CoNi-LDH on BiVO4 substrates using versatile impregnation and electrodeposition. The electronic properties of AgAu NCs facilitate the rapid transfer of photogenerated carriers on BiVO4 and CoNi-LDH. Additionally, ultrathin CoNi-LDH acts as a hole-collecting layer, which quickly extracts holes to the electrode/electrolyte interface. The synergistic effect and the matched energy levels between the ternary heterostructures promote the OER process, which significantly improved the photoelectrochemical (PEC) water oxidation performance. This study presents a new idea for further exploration of metal nanocluster-based PEC systems.

3.
Dalton Trans ; 53(13): 5844-5850, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38469690

RESUMEN

Three pargyline-phosphine copper(I) clusters, [Cu4(CC-C9H12N)3(PPh3)4](PF6) (1) and [Cu6(CC-C9H12N)4(dppy)4](X)2 (dppy = diphenyl-2-pyridylphosphine; X = PF6 for 2 and X = ClO4 for 3), were synthesized. Their structures were fully characterized using various spectroscopic methods and X-ray crystallography, which showed that the stoichiometry and nature of pargyline and phosphine ligands play an important role in tuning the structure and photophysical features of Cu(I) clusters. Interestingly, clusters 1, 2 and 3 exhibited red, orange and yellow phosphorescence with high quantum yields of 88.5%, 22.0% and 40.2%, respectively, at room temperature. Moreover, clusters 1-3 show distinct temperature-dependent emissions. The excellent luminescence performance of 1 and 3 was designed and employed for the construction of monochrome and white light-emitting devices (LEDs).

4.
Anal Chim Acta ; 1284: 342006, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37996161

RESUMEN

Development of high-precision human epidermal growth factor receptor 2 (HER2) assay is essential for the early diagnostic and prevention of breast cancer. In this work, an innovative Fe/Mn bimetallic nanozyme at the edge of N-doped carbon defects (FeMn-NCedge) with abundant active sites was prepared through the hydrothermal synthetic method. FeMn-NCedge nanozyme displayed excellent peroxidase-like activity relative to the H2O2-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) system for generation of the oxidized TMB (oxTMB). As a proof-of-concept application, we constructed an electrochemical immunoassay for the detection of HER2 based on the unique merits of FeMn-NCedge. Initially, a sandwiched immunoreaction was carried out in the microtiter plate coated with monoclonal anti-HER2 capture antibodies using glucose oxidase (GOx)-labeled anti-HER2 as detection antibody. The carried GOx could catalyze glucose to produce H2O2, thus resulting in the formation of oxTMB with the assistance of TMB and FeMn-NCedge nanozyme. The produced oxTMB could be determined on the electrode by the chronoamperometry at an applied potential of +10 mV. Experimental results revealed that the steady-state current increased with the increasing HER2 concentration in the sample, and gave a good linear relationship within the dynamic range of 0.01-10 ng/mL at a limit of detection of 5.4 pg/mL HER2. In addition, good reproducibility, high specificity and acceptable accuracy were acquired for the measurement of human serum samples. Importantly, this method can be extended for quantitative monitoring other disease-related proteins by changing the corresponding antibodies.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Humanos , Carbono/química , Peróxido de Hidrógeno/química , Reproducibilidad de los Resultados , Dominio Catalítico , Inmunoensayo/métodos , Glucosa Oxidasa/química , Oro/química , Colorimetría/métodos , Límite de Detección
5.
Inorg Chem ; 62(37): 14998-15005, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37655478

RESUMEN

Although ionic liquids (ILs) are of prime interest for the synthesis of various nanomaterials, they are scarcely utilized for the polyhydrido copper(I) [Cu(I)H] clusters. Herein, two air-stable Cu(I)H clusters, [Cu8H6(dppy)6](NTf2)2 (Cu8H6) and {Cu12H9(dppy)6[N(CN)2]3} (Cu12H9), are synthesized in high yields for the first time from the ILs-driven conversion of an unprecedented cluster [Cu7H5(dppy)6](ClO4)2 (Cu7H5) by a facile three-layers diffusion crystal (TLDC) method, strategically introducing IL-NTf2 and IL-N(CN)2 as two types of unusual interfacial crystallized templates, respectively. Their structures are fully characterized by various spectroscopic methods and X-ray crystallography, which shows that the anion of IL plays an important role as an anion template and an anion ligand in controlling the structural conversion of Cu(I)H clusters. Their photophysical properties are also investigated, and it is found that all reported clusters exhibit red luminescence with λem ranging from 600 to 690 nm.

6.
Biosens Bioelectron ; 239: 115608, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37603986

RESUMEN

A new photoelectrochemical immunoassay based on self-assembled p-n Ag2O@Bi2O2S nanoflower heterojunction was designed and developed for quantitative monitoring of prostate-specific antigen (PSA) in biological fluids. Primarily, self-assembled p-n Ag2O@Bi2O2S nanoflower heterojunctions were served as the photoactive materials and coated onto the surface of electrodes. Subsequently, the glucose oxidase (GOx) was bound to the detection antibody (mAb2) labeled gold nanoparticles (Au NPs) and then were employed to accomplish a sandwich-like immunoreaction to generate H2O2 on a microplate incubated with monoclonal anti-PSA antibodies. In the presence of PSA, the product (H2O2) was catalyzed by the substrate, which was used as an electron sacrificial agent to improve signal conversion and capture of photogenerated electrons. Under optimum conditions, a wide linear range of 0.01-50 ng mL-1 and a low detection limit of 5.3 pg mL-1 were accomplished with the sensor, exhibiting an excellent photocurrent response. Moreover, the proposed sensor revealed satisfactory reproducibility, high selectivity, and acceptable accuracy for the real sample testing. Importantly, our work provides a novel strategy for high sensitivity detection of disease-associated biomarkers for the early diagnosis of cancers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Masculino , Humanos , Oro , Peróxido de Hidrógeno , Reproducibilidad de los Resultados , Anticuerpos , Inmunoensayo
7.
Biosens Bioelectron ; 237: 115535, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463532

RESUMEN

High entropy (HE) compounds with chemically disordered multi-cation structures have become a hot research topic because of their fascinating "cocktail effect". However, high entropy effect with the efficient photoelectric response has not been reported for photoelectrochemical (PEC) immunoassays. Herein, an innovative PEC immunoassay for the sensitive detection of prostate-specific antigen (PSA) was ingeniously constructed using hollow nanocubic (ZnCdFeMnCu)xS photoactive matrices with high entropic effect via the cation exchange. Initially, a sandwich-type immunoreaction has behaved using dopamine-loaded liposome labeled with anti-PSA secondary antibodies. In the presence of PSA, addition of Triton X-100 caused the liposomal cleavage to release dopamine, which was then detected as a reduced photocurrent on (ZnCdFeMnCu)xS-based photoelectrode. Under optimal condition, the PEC immunoassay showed good photocurrent responses toward target PSA with the dynamic linear range of 0.1-50 ng mL-1 with a limit of detection of 34.1 pg mL-1. Significantly, this system can provide a new platform for the development of PEC immunoassays by coupling with high-entropy photoactive materials.


Asunto(s)
Técnicas Biosensibles , Humanos , Masculino , Dopamina , Entropía , Antígeno Prostático Específico , Inmunoensayo , Anticuerpos , Técnicas Electroquímicas , Límite de Detección
8.
Dalton Trans ; 52(19): 6267-6272, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37083211

RESUMEN

Developing low-cost and highly efficient electrocatalysts for the hydrogen evolution reaction (HER) has stimulated extensive interest. Molybdenum carbide materials have been proposed as promising alternatives to noble platinum-based catalysts due to their earth abundance and tunable physicochemical characteristics. Here, we report Mo2C@NC/Mo2C hollow microspheres composed of a ß-Mo2C core and small ß-Mo2C particles embedded within a nitrogen-doped carbon shell and prepared using guanosine and hexaammonium molybdate as precursors via a hydrothermal self-assembly process, which results in outstanding catalytic activity and fast kinetics in hydrogen evolution in both acidic and alkaline solutions. The significant activity improvement of Mo2C@NC/Mo2C can be attributed to the large ratio of exposed active sites and abundant interfacial structures. This work provides a new template-free strategy for the design of a highly active Mo2C@NC/Mo2C hollow microsphere HER catalyst.

9.
Anal Chim Acta ; 1252: 341058, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36935156

RESUMEN

A Fe-loaded Bi2O2S nanosheet photoanode serving as photoelectric biomonitoring platform for the detection of prostate-specific antigen (PSA) using biologically inspired prussian nanoparticle (PB)-catalyzed biocatalytic precipitation strategy was developed. Primarily, the signal probe PB-mAb2 obtained by electrostatic adsorption was immobilized on a microplate in the presence of target PSA, and 4-chloro-1-naphthol (4-CN) was oxidized to benzo-4-chloro-hexadienone (4-CD) with the assistance of exogenous hydrogen peroxide, which was generated by a large number of hydroxyl radicals catalyzed by PB. The generated 4-CD showed strongly low conductivity characteristics to burst the photocurrent of highly photoactive Fe-Bi2O2S photoanode. The split incubation reaction could be suitable for high volume and low-cost rapid detection. A dynamic response range of 0.1-100 ng mL-1 with a limit of detection of 34.2 pg mL-1 was achieved with the sensor based on a photoelectric sensing platform and a biomimetic catalytic precipitation reaction. Equally important, the sensor also showed good potential in the detection of real samples compared to commercially available ELISA kits. In conclusion, this work provides a fresh scheme for the development of sensitive biosensors through a bio-inspired catalytic strategy of versatility and a photoanode coupling with high photoelectric activity.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Neoplasias , Masculino , Humanos , Antígeno Prostático Específico/análisis , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática , Técnicas Electroquímicas , Límite de Detección
10.
Biosens Bioelectron ; 230: 115260, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989664

RESUMEN

Portable and on-site detection of target biomarker is of great significance in early diagnosis of diseases. Herein, we designed a portable smartphone-based PEC immunoassay platform to detect prostate specific antigen (PSA) adopting Co-doped Bi2O2S nanosheets as photoactive materials. The fast photocurrent response under visible light and excellent electrical transport rate invest Co-doped Bi2O2S with the property of being effectively excited even under a weak light source. Therefore, with the incorporation of a carriable flashlight that act as the excitation light source, disposable screen-printed electrodes, a microelectrochemical workstation and a smartphone that served as control center, point-of-care analytical detection of low-abundance small molecule analytes was successfully realized. Specifically, a sandwich-type immunoreaction was performed using alkaline phosphatase labeled secondary antibody as signal indicator. In the presence of PSA, ascorbic acid as generated through a catalytic reaction, resulting in the enhancement of photocurrent intensity. The photocurrent intensity increased linearly with the logarithm of PSA concentrations ranging from 0.2 to 50 ng mL-1 with a detection limit of 71.2 pg mL-1 (S/N = 3). This system provided an effective method for the construction of portable and miniaturized PEC sensing platform for the application of point-of-care health monitoring.


Asunto(s)
Técnicas Biosensibles , Antígeno Prostático Específico , Humanos , Masculino , Teléfono Inteligente , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Fosfatasa Alcalina , Límite de Detección , Técnicas Electroquímicas/métodos
11.
Biosens Bioelectron ; 230: 115267, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996546

RESUMEN

Herein, we presented a dual-readout gasochromic immunosensing platform for accurate and sensitive detection of carcinoembryonic antigen (CEA) based on Ag-doped/Pd nanoparticles loaded MoO3 nanorods (Ag/MoO3-Pd). Initially, the presence of analyte CEA would prompt the formation of sandwich-type immunoreaction, accompanied by the introduction of Pt NPs labeled on detection antibody. Upon the addition of NH3BH3, the product hydrogen (H2) will interact with Ag/MoO3-Pd as a bridge between the sensing interface and the biological assembly platform. Both photocurrent and temperature signals can serve as readouts due to the significantly increased PEC performance and enhanced photothermal conversion capability of H-Ag/MoO3-Pd (the product of Ag/MoO3-Pd react with H2) compared to Ag/MoO3-Pd. In addition, the DFT results show that the band gap of Ag/MoO3-Pd becomes narrower after the reaction with H2, thus improving the utilization of light, which theoretically explains the internal mechanism of gas sensing reaction. Under optimal conditions, the designed immunosensing platform showed good sensitivity for CEA detection with the limit of detection (LOD) of 26 pg mL-1 (photoelectrochemical mode) and 98 pg mL-1 (photothermal mode). This work not only presents the possible reaction mechanism of Ag/MoO3-Pd and H2, but also creatively applicate it in photothermal biosensors that give a new path for devising dual-readout immunosensor.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas , Inmunoensayo , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Límite de Detección
12.
Chemistry ; 28(36): e202200711, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35393695

RESUMEN

A composite of two-dimensional (2D) GeSe2 nanosheets dispersed on N-doped reduced graphene oxide (GeSe2 /N-rGO) is fabricated via a simple hydrothermal method combined with post-selenization process. The high electronic conductivity and the substantial void spaces of the wrinkled N-rGO can improve the electrical conductivity of the active material and accommodate the volume evolution of GeSe2 nanosheets during the (de)lithiation processes, while GeSe2 nanosheets can reduce ion diffusion length effectively. Meanwhile, the unique layered structure is beneficial to the contact of the active material and electrolyte, and the reversibility of conversion reaction has also been improved. Furthermore, kinetics analysis reveals a pseudocapacitance-dominated Li+ -storage mechanism at high rates. In-situ X-ray diffraction analysis discloses that the conversion reaction has played a certain part in Li+ -storage. Thus, the GeSe2 /N-rGO composite delivers excellent rate capability and good long-term stability with a high reversible capacity of 711.0 mA h g-1 after 2000 cycles at 1 A g-1 .

13.
ACS Appl Mater Interfaces ; 14(4): 5101-5111, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35050572

RESUMEN

The exact fabrication of precise three-dimensional structures for piezoresistive sensors necessitates superior manufacturing methods or tooling, which are accompanied by time-consuming processes and the potential for environmental harm. Herein, we demonstrated a method for in situ synthesis of zinc oxide nanorod (ZnO NR) arrays on graphene-treated cotton and paper substrates and constructed highly sensitive, flexible, wearable, and chemically stable strain sensors. Based on the structure of pine trees and needles in nature, the hybrid sensing layer consisted of graphene-attached cotton or paper fibers and ZnO NRs, and the results showed a high sensitivity of 0.389, 0.095, and 0.029 kPa-1 and an ultra-wide linear range of 0-100 kPa of this sensor under optimal conditions. Our study found that water absorption and swelling of graphene fibers and the associated reduction of pore size and growth of zinc oxide were detrimental to pressure sensor performance. A random line model was developed to examine the effects of different hydrothermal times on sensor performance. Meanwhile, pulse detection, respiration detection, speech recognition, and motion detection, including finger movements, walking, and throat movements, were used to show their practical application in human health activity monitoring. In addition, monolithically grown ZnO NRs on graphene cotton sheets had been integrated into a flexible sensing platform for outdoor UV photo-indication, which is, to our knowledge, the first successful case of an integrated UV photo-detector and motion sensor. Due to its excellent strain detection and UV detection abilities, these strategies are a step forward in developing wearable sensors that are cost-controllable and high-performance.


Asunto(s)
Grafito/química , Monitoreo Fisiológico/métodos , Nanotubos/química , Nanocables/química , Dispositivos Electrónicos Vestibles , Óxido de Zinc/química , Fibra de Algodón , Conductividad Eléctrica , Gossypium/química , Humanos , Monitoreo Fisiológico/instrumentación , Movimiento , Papel , Pulso Arterial , Frecuencia Respiratoria/fisiología , Habla/fisiología , Rayos Ultravioleta
14.
J Mater Chem B ; 9(34): 6818-6824, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612332

RESUMEN

This work reports a photoelectrochemical (PEC) biosensing platform for the sensitive and specific screening of thrombin by using graphene oxide-coated copper-doped zinc oxide quantum dots (Cu0.3Zn0.7O-GO QDs) as the photoactive materials and glucose oxidase-encapsulated DNA nanoflowers (GOx-DFs) for signal amplification. Interestingly, the coated graphene oxide nanosheets on the surface of the Cu0.3Zn0.7O QDs could cause the charge to transfer rapidly and ameliorate the photocorrosion. The doped copper into the quantum dots could enhance the absorption of visible light by tuning the band gap of ZnO QDs, therefore increasing the photocurrent under visible irradiation. Upon addition of target thrombin, a sandwiched reaction was carried out between thrombin aptamer and GOx-DFs, accompanying the formation of nanocomposites with the magnetic microparticles (MMPs)/thrombin/GOx-DFs. Followed by magnetic separation, the carried GOx oxidized glucose to H2O2, thus resulting in the increasing photocurrent of the Cu0.3Zn0.7O-GO QD-modified electrode. Under optimum conditions, the developed PEC biosensing platform exhibited good analytical performance with a linear range of 50-10 000 fM thrombin and a limit of detection of 29 fM. Impressively, our strategy offers a new horizon in developing bridge-connected graphene-coated nanomaterials and novel signal amplification strategy for the development of PEC biosensors.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles , ADN/química , Técnicas Electroquímicas , Nanoestructuras/química , Trombina/análisis , Materiales Biocompatibles/síntesis química , Cobre/química , Grafito/química , Ensayo de Materiales , Tamaño de la Partícula , Procesos Fotoquímicos , Puntos Cuánticos/química , Óxido de Zinc/química
15.
Chem Commun (Camb) ; 57(77): 9890-9893, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34494033

RESUMEN

Two newly synthesized ultra-small copper nanoclusters, [Cu3(µ3-H)(µ2-dppy)4](ClO4)2 (1) and [Cu4(µ4-H)(µ2-dppy)4(µ2-Cl)2](ClO4) (2) (dppy = diphenyl-2-pyridylphosphine), have been shown to exhibit ultrabright yellow and yellow-green room-temperature phosphorescence (RTP) emission, with high quantum yields of 71.8% and 63.5%, respectively. Therefore, nanocluster 1 has been applied for the first time as a single component phosphor for yellow and white light-emitting diodes (LEDs) with favourable characteristics.

16.
Phys Chem Chem Phys ; 23(26): 14276-14283, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34159984

RESUMEN

Non-noble metal single-atom catalysts hold great promise in selective oxidation reactions, although the progress is still unsatisfactory because of the synthesis challenge and the lack of mechanistic interpretations. Herein, we develop a biomolecule-based strategy to synthesize isolated Co single atom site catalysts by one-step pyrolysis of guanosine and Co precursors. Due to the abundant hydrogen bonding and π-π interaction of guanosine, the as-synthesized Co-N-C catalysts present a hierarchical porous two-dimensional (2D) nanostructure with an ultrahigh specific surface area, large pore volume, and high density of cobalt single atoms. Aberration-corrected electron microscopy and X-ray photoelectron spectroscopy reveal that Co species are present as isolated single sites and stabilized by nitrogen-doped carbon nanosheets. These characteristics make Co-GS-900 suitable as an efficient catalyst for selective oxidation of aromatic alkanes. For oxidation of ethylbenzene, Co-GS-900 exhibits a superior performance f with 91% conversion and 98% selectivity of acetophenone.

17.
Nanoscale ; 13(10): 5307-5315, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33656031

RESUMEN

The development of environmentally benign, low-cost and high-performance Ge-based materials for lithium-ion batteries (LIBs) has remained a great challenge. Herein, the synthesis of Ge/N-doped carbon microspheres (Ge/NC) is firstly performed using N-(2hydroxyethyl)ethylenediamine (AEEA) and ethanediamine (EDA) as solvents, ligands and carbon sources. The three-dimensional Ge/NC microspheres prepared with AEEA (Ge/NC-A) are constructed from nanosheets with a thickness of about 20 nm. Such a hierarchically structured material not only allowed sufficient contact between the nanosheets and electrolyte, but also provided sufficient void space and uniform conductive sites. At the same time, N-doped carbon in the Ge/NC-A microspheres can greatly improve the electrical conductivity and the structural stability. This material exhibited a superior rate performance (633.1 mA h g-1 at 20 A g-1), favorable reversible capacity (1113.2 mA h g-1 at 0.2 A g-1) and good cycling stability (a high reversible capacity of 965.0 mA h g-1 after 1000 cycles) when examined as an anode for LIBs. A full cell was fabricated using Ge/NC-A as an anode and LiFePO4 as a cathode and delivered a capacity of 100.7 mA h g-1 after 100 cycles. Furthermore, the lithiation/delithiation mechanisms in the Ge/NC-A microspheres were revealed by in situ Raman and in situ XRD measurements, indicating that the crystalline Ge was firstly converted into amorphous Li-Ge phases and transformed into amorphous Ge during the discharge/charge process. Therefore, the repeated transition between the amorphous and crystalline phases can be avoided, thus improving the cycling stability.

18.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334081

RESUMEN

The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf2]) within an organic-inorganic hybrid host. The organic-inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic-organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO2. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf2] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm-1 at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels.

19.
Dalton Trans ; 49(24): 8347-8353, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32519685

RESUMEN

A series of dinuclear platinum(ii) alkynyl complexes [Pt2L2(C[triple bond, length as m-dash]CC6H4R-4)4] (R = H 1, CH32, But3) and unusual tetranuclear Pt(ii)-Ag(i) clusters [Pt2Ag2L(C[triple bond, length as m-dash]CC6H4R-4)6] (R = H, 4; CH3, 5; But, 6), together with novel polymer crystals [Pt2Ag2L(C[triple bond, length as m-dash]CC6H5)6]∞ ([4]∞), were synthesized by a self-assembly reaction between [NBu4]2[Pt(C[triple bond, length as m-dash]CC6H4-R-4)4] and [Ag6L6]6+ (L = 4-(3,5-(diphenylphosphine)phenyl)pyridine). These complexes were characterized by using a range of spectroscopic techniques and complexes 1, 3, 5, and [4]∞ were analysed by X-ray crystallography. Each platinum atom of the Pt(ii)-Ag(i) clusters shows an unusual asymmetric distorted square planar geometry with three alkynyl groups and one bridging L phosphorus atom. Dinuclear complexes 1-3 demonstrate solid-state weak blue luminescence, while tetranuclear Pt(ii)-Ag(i) clusters 4-6 show intense blue-green or yellow-green emission. Furthermore, the crystalline samples of polymer [4]∞ display bright yellow emission (518 nm) that is significantly red-shifted as compared to monomer crystal 4.

20.
Nanoscale ; 12(14): 7797-7803, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219264

RESUMEN

The search for active, stable and cost-efficient carbocatalysts for selective oxidation and reduction reactions could make a substantial impact on the catalytic technologies that do not rely on conventional metal based catalysts. Here we report a facile strategy for the synthesis of boron (B) and nitrogen (N) co-doped carbon nanosheets (BNC) by using biomolecule guanine as a carbon (C) and N source and boric acid as the B precursor. The whole synthesis process which leads to the formation of a two dimensional (2D) structure and mesoporosity with high surface areas is simple, metal-free and template-free. The as-synthesized carbon nanosheets possess a series of merits, such as relatively high specific surface area, satisfactory pore structure, enough structural defects, abundant B and N dopants as well as oxygen functional groups. The catalytic assessments demonstrate that the presented carbon catalyst is highly active and selective for the liquid phase oxidation of ethyl lactate to ethyl pyruvate and the reduction of nitrobenzene to aniline and outperforms other equivalent benchmarks. Control experiments confirm the importance of the B and N co-doping as well as the carbon matrix which benefit the electron transfer. The carbonyl group masking test indicates that carbonyl groups play an important role in both the selective oxidation and reductions. Given the diversity in the structure of the nucleobase moiety, they represent ideal building blocks for the catalyst-free and metal-free formation of 2D carbon architectures, only induced by hydrogen bonds. This B and N co-doped synthesis strategy provides guidance for the design of carbon-based catalysts for selective oxidation and reductions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...