Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Neurooncol Adv ; 6(1): vdae001, 2024.
Article En | MEDLINE | ID: mdl-38312227

Background: Patients with glioblastoma (GBM) have a median overall survival (OS) of approximately 16 months. However, approximately 5% of patients survive >5 years. This study examines the differences in methylation profiles between long-term survivors (>5 years, LTS) and short-term survivors (<1 year, STS) with isocitrate dehydrogenase (IDH)-wild-type GBMs. Methods: In a multicenter retrospective analysis, we identified 25 LTS with a histologically confirmed GBM. They were age- and sex-matched to an STS. The methylation profiles of all 50 samples were analyzed with EPIC 850k, classified according to the DKFZ methylation classifier, and the methylation profiles of LTS versus STS were compared. Results: After methylation profiling, 16/25 LTS and 23/25 STS were confirmed to be IDH-wild-type GBMs, all with +7/-10 signature. LTS had significantly increased O6-methylguanine methyltransferase (MGMT) promoter methylation and higher prevalence of FGFR3-TACC3 fusion (P = .03). STS were more likely to exhibit CDKN2A/B loss (P = .01) and higher frequency of NF1 (P = .02) mutation. There were no significant CpGs identified between LTS versus STS at an adjusted P-value of .05. Unadjusted analyses identified key pathways involved in both LTS and STS. The most common pathways were the Hippo signaling pathway and the Wnt pathway in LTS, and GPCR ligand binding and cell-cell signaling in STS. Conclusions: A small group of patients with IDH-wild-type GBM survive more than 5 years. While there are few differences in the global methylation profiles of LTS compared to STS, our study highlights potential pathways involved in GBMs with a good or poor prognosis.

2.
Cancer Res Commun ; 3(4): 697-708, 2023 04.
Article En | MEDLINE | ID: mdl-37377751

The interaction between neoplastic and stromal cells within a tumor mass plays an important role in cancer biology. However, it is challenging to distinguish between tumor and stromal cells in mesenchymal tumors because lineage-specific cell surface markers typically used in other cancers do not distinguish between the different cell subpopulations. Desmoid tumors consist of mesenchymal fibroblast-like cells driven by mutations stabilizing beta-catenin. Here we aimed to identify surface markers that can distinguish mutant cells from stromal cells to study tumor-stroma interactions. We analyzed colonies derived from single cells from human desmoid tumors using a high-throughput surface antigen screen, to characterize the mutant and nonmutant cells. We found that CD142 is highly expressed by the mutant cell populations and correlates with beta-catenin activity. CD142-based cell sorting isolated the mutant population from heterogeneous samples, including one where no mutation was previously detected by traditional Sanger sequencing. We then studied the secretome of mutant and nonmutant fibroblastic cells. PTX3 is one stroma-derived secreted factor that increases mutant cell proliferation via STAT6 activation. These data demonstrate a sensitive method to quantify and distinguish neoplastic from stromal cells in mesenchymal tumors. It identifies proteins secreted by nonmutant cells that regulate mutant cell proliferation that could be therapeutically. Significance: Distinguishing between neoplastic (tumor) and non-neoplastic (stromal) cells within mesenchymal tumors is particularly challenging, because lineage-specific cell surface markers typically used in other cancers do not differentiate between the different cell subpopulations. Here, we developed a strategy combining clonal expansion with surface proteome profiling to identify markers for quantifying and isolating mutant and nonmutant cell subpopulations in desmoid tumors, and to study their interactions via soluble factors.


Fibromatosis, Aggressive , Humans , beta Catenin/genetics , Cell Proliferation/genetics , Fibroblasts/metabolism , Fibromatosis, Aggressive/genetics , Stromal Cells/metabolism , Thromboplastin
3.
Nat Commun ; 14(1): 2696, 2023 05 10.
Article En | MEDLINE | ID: mdl-37164978

Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive sarcoma, and a lethal neurofibromatosis type 1-related malignancy, with little progress made on treatment strategies. Here, we apply a multiplatform integrated molecular analysis on 108 tumors spanning the spectrum of peripheral nerve sheath tumors to identify candidate drivers of MPNST that can serve as therapeutic targets. Unsupervised analyses of methylome and transcriptome profiles identify two distinct subgroups of MPNSTs with unique targetable oncogenic programs. We establish two subgroups of MPNSTs: SHH pathway activation in MPNST-G1 and WNT/ß-catenin/CCND1 pathway activation in MPNST-G2. Single nuclei RNA sequencing characterizes the complex cellular architecture and demonstrate that malignant cells from MPNST-G1 and MPNST-G2 have neural crest-like and Schwann cell precursor-like cell characteristics, respectively. Further, in pre-clinical models of MPNST we confirm that inhibiting SHH pathway in MPNST-G1 prevent growth and malignant progression, providing the rational for investigating these treatments in clinical trials.


Nerve Sheath Neoplasms , Neurofibromatosis 1 , Neurofibrosarcoma , Humans , Neurofibrosarcoma/genetics , Neurofibrosarcoma/metabolism , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/pathology , Neurofibromatosis 1/genetics , Schwann Cells/metabolism , Wnt Signaling Pathway/genetics
4.
Mamm Genome ; 34(1): 76-89, 2023 03.
Article En | MEDLINE | ID: mdl-36763178

Hypobaric hypoxia is an environmental stress leading to high-altitude pulmonary hypertension. While high-altitude pulmonary hypertension has been linked to high hematocrit findings (chronic mountain sickness; CMS). The present study is designed to investigate the effect of arginine (ARG) on hypobaric hypoxia-induced CMS of rats. Hypobaric hypoxia resulted in lower body weight, decreased appetite, increased pulmonary artery pressure, and deteriorated lung tissue damage in rats. Red blood cells (RBC), hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin values and blood viscosity were increased in rats, which were alleviated by ARG. microRNA (miRNA) microarray analysis was used to filter differentially expressed miRNAs after ARG in rats. miR-144-5p was reduced under hypobaric hypoxia and upregulated by ARG. miR-144-5p silencing aggravated the erythrocytosis and hyperviscosity in rats, and also accentuated tissue damage and excessive accumulation of RBC. The role of miR-144-5p in rats with CMS was achieved by blocking erythropoietin (EPO)/erythropoietin receptor (EPOR). In conclusion, ARG alleviated CMS symptoms in rodents exposed to hypobaric hypoxia by decreasing EPO/EPOR via miR-144-5p.


Altitude Sickness , Hypertension, Pulmonary , MicroRNAs , Rats , Animals , Arginine , Hypoxia
5.
J Neurosurg Case Lessons ; 5(6)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36748749

BACKGROUND: Lipomatous meningiomas are an extremely rare, benign meningioma subtype subcategorized under metaplastic meningioma in the most recent 2021 update to the World Health Organization classification. They make up less than 0.3% of all meningiomas and, to date, less than 70 cases have been reported in the literature, none of which have undergone molecular profiling. This study aims to promote the utility of molecular profiling to better diagnose these rare tumors. OBSERVATIONS: The authors present the first case of a lipomatous meningioma with DNA methylation profiling that both confirmed its benign biology and uncovered unique cytogenetic changes. Molecular characterization of a lipomatous meningioma confirmed its diagnosis as a distinct, benign meningioma subtype and revealed several copy number variations on chromosome 8 and in NF2 and SMARCB1. Here we discuss some of the radiological and histopathological features of lipomatous meningiomas, how they can be used to distinguish from other meningiomas and other similarly presenting tumors, and a brief literature review discussing the pathophysiology and presentation of this rare tumor. LESSONS: This study provides evidence supporting the use of molecular profiling to diagnose lipomatous meningiomas and guide their clinical management more accurately.

6.
Int J Cardiol ; 375: 44-54, 2023 03 15.
Article En | MEDLINE | ID: mdl-36414043

BACKGROUND: Heart failure (HF) is a complex pathophysiological state characterized by inadequate delivery of blood and nutrients to the cardiac tissues. It is rarely curable and is commonly associated with a poor prognosis. In this study, we aimed to analyse exomic and RNA-Seq data from patients with HF to identify the key altered pathways in HF. METHODS: Whole blood samples were collected from patients with HF and subjected to whole exome sequencing (WES) and RNA-Seq analysis. The gene expression and RNA-Seq data obtained were verified using gene chip analysis and RT-PCR. RESULTS: Both exomic and RNA-Seq data confirmed the dysregulation of phosphorylation and immune signalling in patients with HF. Specifically, exomic analysis showed that TITIN, OBSCURIN, NOD2, CDH2, MAP3K5, and SLC17A4 mutations were associated with HF, and RNA-Seq revealed that S100A12, S100A8, S100A9, PFDN5, and TMCC2, were upregulated in patients with HF. Additionally, comparison between RNA-seq and WES data showed that OAS1 mutations are associated with HF. CONLCUSION: Our findings indicated that patients with HF show an overall disruption of key phosphorylation and immune signalling pathways. Based on RNA-seq and WES, OAS1 mutations may be primarily responsible for these changes.


Heart Failure , Humans , RNA-Seq , Heart Failure/diagnosis , Heart Failure/genetics , Exome Sequencing , Stroke Volume , Genomics , Mutation/genetics , Gene Expression Profiling , 2',5'-Oligoadenylate Synthetase
7.
Anal Chem ; 94(31): 10921-10929, 2022 08 09.
Article En | MEDLINE | ID: mdl-35904339

Thanks to its preparatory ease, close affinity, and low cost, the aptasensor can serve as a promising substitute for antibody-dependent biosensors. However, the available aptasensors are mostly subject to a single-mode readout and the interference of unbound aptamers in solution and non-target-induced transition events. Herein, we proposed a multimodal aptasensor for multimode detection of ochratoxin A (OTA) with cross-validation using the 3'-6-carboxyfluorescein (FAM)-enhanced exonuclease I (Exo I) tool and magnetic microbead carrier. Specifically, the 3'-FAM-labeled aptamer/biotinylated-cDNA hybrids were immobilized onto streptavidin-magnetic microbeads via streptavidin-biotin interaction. With the presence of OTA, an antiparallel G-quadruplex conformation was formed, protecting the 3'-FAM labels from Exo I digestion, and then anti-FAM-horseradish peroxidase (HRP) was bound via specific antigen-antibody affinity; for the aptamers without the protection of OTA, the distal ssDNA was hydrolyzed from 3' → 5', releasing 3'-FAM labels to the solution. Therefore, the OTA was detected by analyzing the "signal-off" fluorescence of the supernatant and two "signal-on" signals in electrochemistry and colorimetry through the detection of the coating magnetic microbeads in HRP's substrate. The results showed that the 3'-FAM labels increased the activity of Exo I, producing a low background due to a more thorough digestion of unbound aptamers. The proposed multimodal aptasensor successfully detected the OTA in actual samples. This work first provides a novel strategy for the development of aptasensors with Exo I and 3'-FAM labels, broadening the application of aptamer in the multimode detection of small molecules.


Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Exodeoxyribonucleases , Limit of Detection , Magnetic Phenomena , Microspheres , Ochratoxins/analysis , Streptavidin/chemistry
8.
Brain Tumor Pathol ; 39(4): 225-231, 2022 Oct.
Article En | MEDLINE | ID: mdl-35668302

A child had been followed since infancy by our multi-disciplinary neuro-oncology clinic with annual magnetic resonance imaging (MRI) under the presumed diagnosis of encephalocraniocutaneous lipomatosis (ECCL), with clinical features including nevus psiloliparus, scalp lipoma, nodular skin tag on and coloboma of the eyelid, cortical atrophy and meningeal angiomatosis. At the age of 4, she was found to have a large temporoparietal lesion causing elevated intracranial pressure requiring surgical resection. Histopathological exam of the tumor was suggestive of an intracranial sarcoma. Sequencing analysis of the tumor revealed mutations in DICER1, KRAS and TP53. Subsequent germline testing confirmed DICER1 syndrome and revealed an insignificant FGFR1 variant at a low frequency. Methylation profile of the tumor showed the tumor clustered most closely with sarcoma (rhabdomyosarcoma-like), confirming this tumor to be a primary DICER1-sarcoma. Compared to the previously reported cases, our unique case of primary DICER1-sarcoma also demonstrated neurofilament and chromogranin positivity, and genomic instability with loss of chromosome 4p, 4q, 8p, 11p, and 19p, as well as gains in chromosome 7p, 9p, 9q, 13q, and 15q on copy variant analysis. The detailed sequencing and methylation information discovered in this unique case of DICER1-sarcoma will hopefully help further our understanding of this rare and emerging entity.


Proto-Oncogene Proteins p21(ras) , Sarcoma , Child , Chromogranins/genetics , DEAD-box RNA Helicases/genetics , Eye Diseases , Female , Humans , Lipomatosis , Mutation , Neurocutaneous Syndromes , Proto-Oncogene Proteins p21(ras)/genetics , Ribonuclease III/genetics , Sarcoma/diagnosis , Sarcoma/genetics , Tumor Suppressor Protein p53/genetics
9.
Clin Exp Hypertens ; 44(1): 46-56, 2022 Jan 02.
Article En | MEDLINE | ID: mdl-34648405

BACKGROUND: Pulmonary hypertension (PH) is a rare and deadly disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. hypobaric pulmonary hypertension (HPH) is clinically classified as group 4 of pulmonary hypertension and has a poor prognosis . Previous reports showed that HPH was associated with increased endoplasmic reticulum (ER) stress. The protein kinase R-like endoplasmic reticulum kinase (PERK) is an ER-associated stress protein. However, to date, its physiological effects on HPH and RVF development remains unknown. This study aimed to assess PERK's role in HPH and RV function using in vivo experimental model. METHODS: Perk-knockout male Sprague-Dawley rats were generated and were housed in either a hypobaric chamber or in a normoxic environment. After stimulation for 4 weeks, the hemodynamic parameters of the rats were measured. The heart and lungs were harvested for pathological observation. Blood was collected for the detection of inflammatory indexes. The right ventricle tissue was collected to assess phosphorylated-AKT, ROCK1, ET1, and MMP2 protein expression. RESULTS: WE FIRSTLY GENERATED PERK+/− RATS,: Under normal conditions, Perk+/- rats showed no changes in mPAP(mean pulmonary artery pressure), RVHI(Right ventricular hypertrophy index), cardiomyocyte size and interstitial fibrosis, and pulmonary vascular remodeling. However, in response to chronic hypoxia, Perk+/- rats exhibited decreased in mPAP, RVHI, ventricular fibrosis, and lung remodeling compared to wild-type rats. Perk+/- rats also showed lower expression of phosphor-AKT, ROCK1, ET1, and MMP2 protein in response to chronic hypoxia. CONCLUSIONS: These findings suggest that Perk heterozygosity protects against HPH and Perk may be a suitable target for treating HPH.


Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Animals , Hypertension, Pulmonary/genetics , Hypertrophy, Right Ventricular/genetics , Hypoxia/complications , Hypoxia/genetics , Lung , Male , Pulmonary Artery , Rats , Rats, Sprague-Dawley
10.
Front Med (Lausanne) ; 8: 742436, 2021.
Article En | MEDLINE | ID: mdl-34805208

High-altitude pulmonary hypertension (HAPH) is a complication arising from an inability to acclimatize to high altitude and is associated with high morbidity and mortality. We aimed to analyze the effects of macitentan, selexipag, riociguat, and reoxygenation on HAPH, and to screen possible targets of these treatments for future drug screening. Rats were subjected to hypobaric hypoxia for 35 days to induce HAPH, and treated with vehicle or selexipag, macitentan, riociguat, or with reoxygenation, from days 21 to 35. Selexipag, macitentan, and reoxygenation prevented an increase in mean pulmonary artery pressure and hypoxia-induced right ventricular hypertrophy, compared to the vehicle. Riociguat had little effect. RNA-seq and proteomics revealed strong correlations between responses to the three drugs, which had almost identical effects. GO-enrichment revealed that the differentially expressed genes included those involved in metabolic regulation, transcription, and translation. Various molecular pathways were annotated. Selexipag, macitentan, and reoxygenation ameliorated HAPH. Serpina1, Cryz, and Cmc1 were identified, via multi-omics screening, as key genes involved in HAPH. These findings provide new insights into the targeted drug mechanisms in HAPH.

11.
Int Immunopharmacol ; 101(Pt B): 107592, 2021 Dec.
Article En | MEDLINE | ID: mdl-34715573

OBJECTIVE: MicroRNAs (miRNAs) are essential biomarkers during development of human diseases. We aimed to explore the role of hypoxia-induced bone marrow mesenchymal stem cells (BMSCs)-derived exosomal miR-98-5p in myocardial ischemia-reperfusion injury (MI/RI). METHODS: BMSCs were isolated, cultured, stimulated by hypoxia and transfected with adenovirus expressing miR-98-5p. The exosomes were extracted from BMSCs and named as BMSC-exos. The rat MI/RI models were established by ligation of left anterior descending artery and were respectively injected. Then, hemodynamic indices, myocardial enzymes, oxidative stress factors, inflammatory factors, macrophage infiltration and infarct size in these rats were determined. Expression of miR-98-5p, toll-like receptor 4 (TLR4) and the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway-related proteins was assessed. The target relation between miR-98-5p and TLR4 was confirmed by bioinformatic method and dual luciferase report gene assay. RESULTS: MiR-98-5p was downregulated, TLR4 was upregulated and the PI3K/Akt signaling pathway was inactivated in MI/RI rat myocardial tissues. Exosomal miR-98-5p from hypoxic BMSCs promoted cardiac function and suppressed myocardial enzyme levels, oxidative stress, inflammation response, macrophage infiltration and infarct size in I/R myocardial tissues. Moreover, TRL4 was targeted by miR-98-5p and miR-98-5p activated PI3K/Akt signaling pathway. CONCLUSION: Hypoxia-induced BMSC-exos elevated miR-98-5p to protect against MI/RI. This study may be helpful for treatment of MI/RI.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , MicroRNAs/pharmacology , Oxygen/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Bone Marrow Cells/physiology , Exosomes , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , MicroRNAs/metabolism , Myocardial Reperfusion , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics
12.
Nature ; 597(7874): 119-125, 2021 09.
Article En | MEDLINE | ID: mdl-34433969

Meningiomas are the most common primary intracranial tumour in adults1. Patients with symptoms are generally treated with surgery as there are no effective medical therapies. The World Health Organization histopathological grade of the tumour and the extent of resection at surgery (Simpson grade) are associated with the recurrence of disease; however, they do not accurately reflect the clinical behaviour of all meningiomas2. Molecular classifications of meningioma that reliably reflect tumour behaviour and inform on therapies are required. Here we introduce four consensus molecular groups of meningioma by combining DNA somatic copy-number aberrations, DNA somatic point mutations, DNA methylation and messenger RNA abundance in a unified analysis. These molecular groups more accurately predicted clinical outcomes compared with existing classification schemes. Each molecular group showed distinctive and prototypical biology (immunogenic, benign NF2 wild-type, hypermetabolic and proliferative) that informed therapeutic options. Proteogenomic characterization reinforced the robustness of the newly defined molecular groups and uncovered highly abundant and group-specific protein targets that we validated using immunohistochemistry. Single-cell RNA sequencing revealed inter-individual variations in meningioma as well as variations in intrinsic expression programs in neoplastic cells that mirrored the biology of the molecular groups identified.


Biomarkers, Tumor/metabolism , Meningioma/classification , Meningioma/metabolism , Proteogenomics , DNA Methylation , Data Analysis , Drug Discovery , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Male , Meningioma/drug therapy , Meningioma/genetics , Mutation , RNA-Seq , Reproducibility of Results , Single-Cell Analysis
13.
High Alt Med Biol ; 22(2): 184-192, 2021 Jun.
Article En | MEDLINE | ID: mdl-33989063

Liu, Chunlei, Xu Chen, Ge Guo, Xiang Xu, Xin Li, Qingxia Wei, Yanying Shen, Hanlu Li, Jianxiu Hao, Ya Ping Tian, and Kunlun He. Effects of intermittent normoxia on chronic hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. High Alt Med Biol. 22: 184-192, 2021. Background: Individuals with chronically low arterial oxygen tension owing to high altitude develop elevated rates of pulmonary hypertension (PH) and right ventricular (RV) hypertrophy. However, the effects of the frequency and duration of normoxic exposure on PH and RV hypertrophy have not been adequately assessed; thus, we aimed to analyze the same. Materials and Methods: PH and RV hypertrophy were induced in 60 rats using a hypobaric chamber. Of these 60 rats, every 10 were exposed to normoxic conditions for 30 minutes once (1T/D), three times (3T/D), or five times daily (5T/D), or for one 150-minute recovery daily (1LT/D). Furthermore, 10 rats were housed in a normoxic environment, and another 10 were subjected to continuous hypoxia. After 4 weeks, hemodynamic measurements were recorded, and the hearts were harvested for pathomorphological observations. Results: Average pulmonary arterial pressures (PAP) of control rats and those exposed to hypobaric hypoxia were 14.1 and 32.3 mmHg, respectively. After 30 minutes of exposure to normoxia 3T/D, 5T/D, or 1LT/D, PAP values were reduced to 27.1, 27.9, or 26.8 mmHg, respectively. Four weeks of hypoxic exposure elevated the RV/heart weight (HW) ratios, while exposure to normoxia 3T/D, 5T/D, and 1LT/D significantly reduced RV/HW. In addition, exposure to normoxia 3T/D, 5T/D, 1LT/D reduced the percentage wall thickness of the pulmonary artery as well as the hypertrophy indices of atrial natriuretic peptide, brain natriuretic peptide, and myosin heavy chain 7 (MYH-7). Conclusions: Thirty-minute exposure to normoxic conditions of 3T/D, 5T/D, or 1LT/D effectively ameliorates PH and RV thickening.


Hypertension, Pulmonary , Animals , Hypertension, Pulmonary/etiology , Hypertrophy, Right Ventricular/etiology , Hypoxia/complications , Lung , Male , Pulmonary Artery , Rats
14.
Acta Neuropathol Commun ; 9(1): 67, 2021 04 14.
Article En | MEDLINE | ID: mdl-33853689

One of the most prominent features of glioblastoma (GBM) is hyper-vascularization. Bone marrow-derived macrophages are actively recruited to the tumor and referred to as glioma-associated macrophages (GAMs) which are thought to provide a critical role in tumor neo-vascularization. However, the mechanisms by which GAMs regulate endothelial cells (ECs) in the process of tumor vascularization and response to anti-angiogenic therapy (AATx) is not well-understood. Here we show that GBM cells secrete IL-8 and CCL2 which stimulate GAMs to produce TNFα. Subsequently, TNFα induces a distinct gene expression signature of activated ECs including VCAM-1, ICAM-1, CXCL5, and CXCL10. Inhibition of TNFα blocks GAM-induced EC activation both in vitro and in vivo and improve survival in mouse glioma models. Importantly we show that high TNFα expression predicts worse response to Bevacizumab in GBM patients. We further demonstrated in mouse model that treatment with B20.4.1.1, the mouse analog of Bevacizumab, increased macrophage recruitment to the tumor area and correlated with upregulated TNFα expression in GAMs and increased EC activation, which may be responsible for the failure of AATx in GBMs. These results suggest TNFα is a novel therapeutic that may reverse resistance to AATx. Future clinical studies should be aimed at inhibiting TNFα as a concurrent therapy in GBMs.


Brain Neoplasms/pathology , Drug Resistance, Neoplasm/physiology , Glioma/pathology , Macrophages/metabolism , Neovascularization, Pathologic/metabolism , Tumor Necrosis Factor-alpha/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Brain Neoplasms/metabolism , Endothelial Cells/metabolism , Glioma/metabolism , Humans , Mice , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
15.
ACS Sens ; 6(3): 1348-1356, 2021 03 26.
Article En | MEDLINE | ID: mdl-33657808

Herein, an interface-based DNA nanosieve that has the ability to differentiate ssDNA from dsDNA has been demonstrated for the first time. The DNA nanosieve could be readily built through thiol-DNA's self-assembly on the gold electrode surface, and its cavity size was tunable by varying the concentration of thiol-DNAs. Electrochemical chronocoulometry using [Ru(NH3)6]3+ as redox revealed that the average probe-to-probe separation in the 1 µM thiol-DNA-modified gold electrode was 10.6 ± 0.3 nm so that the rigid dsDNA with a length of ∼17 nm could not permeate the nanosieve, whereas the randomly coiled ssDNA could enter it due to its high flexibility, which has been demonstrated by square wave voltammetry and methylene blue labels through an upside-down hybridization format. After combining the transiently binding characteristic of a short DNA duplex and introducing a regenerative probe (the counterpart of ssDNA), a highly reproducible nanosieve-based E-DNA model was obtained with a relative standard deviation (RSD) as low as 2.7% over seven cycles. Finally, we built a regenerative nanosieve-based E-DNA sensor using a ligation cycle reaction as an ssDNA amplification strategy and realized one-sensor-based continuous measurement to multiple clinical samples with excellent allele-typing performance. This work holds great potential in low-cost and high-throughput analysis between biosensors and biochips and also opens up a new avenue in nucleic acid flexibility-based DNA materials for future applications in DNA origami and molecular logic gates.


Biosensing Techniques , Nucleic Acids , Alleles , DNA/genetics , Nucleic Acid Hybridization
16.
Anal Chem ; 93(2): 911-919, 2021 01 19.
Article En | MEDLINE | ID: mdl-33284015

Accurate and sensitive detection of single-base mutations in RNAs is of great value in basic studies of life science and medical diagnostics. However, the current available RNA detection methods are challenged by heterogeneous clinical samples in which trace RNA mutants usually existed in a large pool of normal wild sequences. Thus, there is still great need for developing the highly sensitive and highly specific methods in detecting single-base mutations of RNAs in heterogeneous clinical samples. In the present study, a new chimeric DNA probe-aided ligase chain reaction-based electrochemical method (cmDNA-eLCR) was developed for RNA mutation detection through the BSA-based carrier platform and the horseradish peroxidase-hydrogen peroxide-tetramethylbenzidine (HRP-H2O2-TMB) system. The denaturing polyacrylamide gel electrophoresis and a fluorophore-labeled probe was ingeniously designed to demonstrate the advantage of cmDNA in ligation to normal DNA templated by RNA with the catalysis of T4 RNA ligase 2 as well as its higher selectivity than DNA ligase system. Finally, the proposed cmDNA-eLCR, compared with the traditional eLCR, showed excellent performance in discriminating single base-mismatched sequences, where the signal response for mismatched targets at a high concentration could overlap completely with that for the blank control. Besides, this cmDNA-eLCR assay had a wide linear range crossing six orders of magnitude from 1.0 × 10-15 to1.0 × 10-10 M with a limit of detection as low as 0.6 fM. Furthermore, this assay was applied to detect RNA in real sample with a satisfactory result, thereby demonstrating its great potential in diagnosis of RNA-related diseases.


Biosensing Techniques , DNA Probes/chemistry , Electrochemical Techniques , Ligase Chain Reaction , RNA/genetics , Humans
17.
Talanta ; 216: 120966, 2020 Aug 15.
Article En | MEDLINE | ID: mdl-32456905

Challenged by the detection of trace amounts of mutants and disturbance from endogenous substances in clinical samples, herein, we present a novel electrochemical biosensor based on ligase chain reaction (eLCR) via the thermostable ligase with high mutation recognizing ability. The lengthened double-stranded DNAs exponentially generated via LCR were uniformly distributed on a bovine serum albumin-modified gold electrode, in which the phosphate buffer was tactfully added to remove adsorbed uninterested-probes, and thereafter the amperometry current was collected for the specific binding of streptavidin-poly-HRP and subsequent catalysis in the 3, 3', 5, 5'-tetramethylbenzidine substrate that contained hydrogen peroxide. It found that, under optimized conditions, the proposed biosensor exhibited a high selectivity of mutant targets from the 104-fold excess of co-existent wild targets within a detection limit of 0.5 fM. Impressively, without the involvement of pre-PCR, the homozygous mutants were specifically distinguished from the wild genotype of CYP2C19*2 allele in human whole blood samples. Therefore, the proposed eLCR, due to its advantages in simple primer design, operational ease and ease of miniaturization, has demonstrated its considerable potential for point-of-care testing in the diagnosis of point mutation-related diseases and personalized medicine.


Biosensing Techniques , Cytochrome P-450 CYP2C19/genetics , Electrochemical Techniques , Ligase Chain Reaction , Cytochrome P-450 CYP2C19/blood , Humans , Point Mutation
18.
J Cardiovasc Pharmacol ; 75(6): 545-555, 2020 06.
Article En | MEDLINE | ID: mdl-32141989

Pulmonary arterial hypertension (PAH) is a progressive and malignant disease characterized by pulmonary small arteries and right ventricle (RV) remodeling that can lead to severe RV dysfunction and death. The current therapeutic targets for RV dysfunction, which is strongly linked to mortality, are far from adequate. Therefore, we investigated the effect of ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, on PAH-induced RV remodeling and its underlying mechanism. We established a PAH model by injecting Sprague Dawley rats with monocrotaline (MCT, 60 mg/kg, ip), as verified by echocardiography and hemodynamic examination. Proteomic analysis was performed on RV samples using a Q Exactive high-field mass spectrometer, followed by KEGG enrichment analysis. The effect of 4 weeks of UA (50 mg/kg) treatment on RV remodeling was explored based on ultrasound, hemodynamic parameters, and histological changes, with the mechanism verified in vivo and in vitro by qRT-PCR and western blotting. RV hypertrophy, fibrosis, increased apoptosis, and abnormal metabolism were induced by MCT and suppressed by UA via a mechanism that changed the expression of key markers. UA also attenuated the Phenylephrine-induced hypertrophy of neonatal rat ventricular myocytes and upregulated peroxisome proliferator-activated receptor-alpha (PPARα), a key fatty acid metabolism regulator, and its downstream factor carnitine palmitoyl transferase 1b. In conclusion, UA exerts beneficial effects on PAH-induced RV dysfunction and remodeling by regulating PPARα-dependent fatty acid metabolism.


Energy Metabolism/drug effects , Heart Ventricles/drug effects , Hypertrophy, Right Ventricular/prevention & control , Monocrotaline , Myocytes, Cardiac/drug effects , Pulmonary Arterial Hypertension/drug therapy , Triterpenes/pharmacology , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects , Animals , Apoptosis/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Disease Models, Animal , Fatty Acids/metabolism , Fibrosis , Heart Ventricles/enzymology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , PPAR alpha/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Rats, Sprague-Dawley , Ursolic Acid
19.
J Vis Exp ; (150)2019 08 24.
Article En | MEDLINE | ID: mdl-31498319

The human appendix has been recently implicated to play important biological roles in the pathogenesis of various complex diseases, such as colorectal cancer, inflammatory bowel disease, and Parkinson's disease. To study the function of the appendix, a gut disease-associated murine appendectomy model has been established and its step-by-step protocol is described here. This report introduces a facile protocol for caecal patch removal in mice followed by the chemical induction of chronic colitis-associated colorectal cancer using a combination of dextran sulfate sodium (DSS) and azoxymethane (AOM). IgA specific cells and IgA concentration were significantly reduced upon removal of the caecal patch in male C57BL/6 mice compared to those in the sham group. Simultaneously administering 2% DSS and AOM resulted in nearly 80% mice survival in both sham and appendectomy groups without significant body weight loss. Histological results confirmed colonic inflammation and different degrees of adenocarcinoma. This model can be used for the study of the functional role of the appendix in maintaining gut microbiota homeostasis and pathogenesis of gut colitis and malignancies, as well as for the potential development of drug targeting therapies.


Adenocarcinoma/surgery , Appendectomy , Colitis/surgery , Colorectal Neoplasms/surgery , Disease Models, Animal , Adenocarcinoma/etiology , Adenocarcinoma/pathology , Animals , Azoxymethane , Carcinogens , Cecum/surgery , Chronic Disease , Colitis/chemically induced , Colitis/complications , Colitis/pathology , Colon/pathology , Colon/surgery , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Dextran Sulfate , Male , Mice, Inbred C57BL
20.
Article En | MEDLINE | ID: mdl-31334136

Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.


Cecum/drug effects , Colon/drug effects , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Spirulina/chemistry , Animals , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/microbiology , Clostridiales/classification , Clostridiales/genetics , Clostridiales/isolation & purification , Clostridium/classification , Clostridium/genetics , Clostridium/isolation & purification , Colon/microbiology , Complex Mixtures/administration & dosage , Desulfovibrio/classification , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Dose-Response Relationship, Drug , Eubacterium/classification , Eubacterium/genetics , Eubacterium/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Leptin/blood , Lipids/blood , Male , Mice , Mice, Inbred BALB C , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
...