Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(51): 10974-10986, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38097367

RESUMEN

In plants and algae, the primary antenna protein bound to photosystem II is light-harvesting complex II (LHCII), a pigment-protein complex that binds eight chlorophyll (Chl) a molecules and six Chl b molecules. Chl a and Chl b differ only in that Chl a has a methyl group (-CH3) on one of its pyrrole rings, while Chl b has a formyl group (-CHO) at that position. This blue-shifts the Chl b absorbance relative to Chl a. It is not known how the protein selectively binds the right Chl type at each site. Knowing the selection criteria would allow the design of light-harvesting complexes that bind different Chl types, modifying an organism to utilize the light of different wavelengths. The difference in the binding affinity of Chl a and Chl b in pea and spinach LHCII was calculated using multiconformation continuum electrostatics and free energy perturbation. Both methods have identified some Chl sites where the bound Chl type (a or b) has a significantly higher affinity, especially when the protein provides a hydrogen bond for the Chl b formyl group. However, the Chl a sites often have little calculated preference for one Chl type, so they are predicted to bind a mixture of Chl a and b. The electron density of the spinach LHCII was reanalyzed, which, however, confirmed that there is negligible Chl b in the Chl a-binding sites. It is suggested that the protein chooses the correct Chl type during folding, segregating the preferred Chl to the correct binding site.


Asunto(s)
Clorofila , Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/química , Clorofila/química , Clorofila A , Complejo de Proteína del Fotosistema II , Plantas/metabolismo
2.
Photosynth Res ; 156(1): 101-112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36307598

RESUMEN

Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Protones , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Concentración de Iones de Hidrógeno , Transporte de Electrón , Fotosíntesis , Rhodobacter sphaeroides/metabolismo
3.
Photosynth Res ; 152(2): 153-165, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35344134

RESUMEN

The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Sitios de Unión , Transporte de Electrón , Cinética , Protones , Quinonas , Ubiquinona
4.
J Phys Chem B ; 126(13): 2476-2485, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344367

RESUMEN

Proteins are polyelectrolytes with acidic and basic amino acids Asp, Glu, Arg, Lys, and His, making up ≈25% of the residues. The protonation state of residues, cofactors, and ligands defines a "protonation microstate". In an ensemble of proteins some residues will be ionized and others neutral, leading to a mixture of protonation microstates rather than in a single one as is often assumed. The microstate distribution changes with pH. The protein environment also modifies residue proton affinity so microstate distributions change in different reaction intermediates or as ligands are bound. Particular protonation microstates may be required for function, while others exist simply because there are many states with similar energy. Here, the protonation microstates generated in Monte Carlo sampling in MCCE are characterized in HEW lysozyme as a function of pH and bacterial photosynthetic reaction centers (RCs) in different reaction intermediates. The lowest energy and highest probability microstates are compared. The ΔG, ΔH, and ΔS between the four protonation states of Glu35 and Asp52 in lysozyme are shown to be calculated with reasonable precision. At pH 7 the lysozyme charge ranges from 6 to 10, with 24 accepted protonation microstates, while RCs have ≈50,000. A weighted Pearson correlation analysis shows coupling between residue protonation states in RCs and how they change when the quinone in the QB site is reduced. Protonation microstates can be used to define input MD parameters and provide insight into the motion of protons coupled to reactions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Transporte de Electrón , Concentración de Iones de Hidrógeno , Ligandos , Método de Montecarlo , Muramidasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Protones , Rhodobacter sphaeroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...