Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
J Environ Manage ; 364: 121473, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38878582

The newly discovered ClO• and BrO• contribute to pollutant degradation in advanced oxidation processes, while acrylamide (AM) and acrylonitrile (ACN) are always the focus of scientists concerned due to their continuous production and highly toxic effects. Moreover, various particles with a graphene-like structure are the companions of AM/ACN in dry/wet sedimentation or aqueous phase existence, which play an important role in heterogeneous oxidation. Thus, this work focuses on the reaction mechanism and environmental effect of AM/ACN with ClO•/BrO•/HO• in the water environment under the influence of graphene (GP). The results show that although the reactivity sequence of AM and ACN takes the order of with HO• > with BrO• > with ClO•, the easiest channel always occurs at the same C-position of the two reactants. The reaction rate constants (k) of AM with three radicals are 2 times larger than that with ACN, and amide groups have a better ability to activate CC bonds than cyanide groups. The existence of GP can accelerate the target reaction, and the k increased by 9-13 orders of magnitude. The toxicity assessment results show that the toxic effect of most products is lower than that of parent compounds, but the environmental risk of products from ClO•/BrO•-adducts is higher than those from HO•-adducts. The oxidative degradation process based on ClO• and BrO• deserves special attention, and the catalytic effect of GP and its derivatives on the oxidation process is non-negligible.

2.
Molecules ; 29(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38675699

In the face of ongoing water pollution challenges, the intricate interplay between dissolved organic matter and disinfectants like chlorine gives rise to potentially harmful disinfection byproducts (DBPs) during water treatment. The exploration of DBP formation originating from amino acids (AA) is a critical focus of global research. Aromatic DBPs, in particular, have garnered considerable attention due to their markedly higher toxicity compared to their aliphatic counterparts. This work seeks to advance the understanding of DBP formation by investigating chlorination disinfection and kinetics using tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) as precursors. Via rigorous experiments, a total of 15 distinct DBPs with accurate molecular structures were successfully identified. The chlorination of all three AAs yielded highly toxic chlorophenylacetonitriles (CPANs), and the disinfectant dosage and pH value of the reaction system potentially influence chlorination kinetics. Notably, Phe exhibited the highest degradation rate compared to Tyr and Trp, at both the CAA:CHOCl ratio of within 1:2 and a wide pH range (6.0 to 9.0). Additionally, a neutral pH environment triggered the maximal reaction rates of the three AAs, while an acidic condition may reduce their reactivity. Overall, this study aims to augment the DBP database and foster a deeper comprehension of the DBP formation and relevant kinetics underlying the chlorination of aromatic AAs.


Amino Acids, Aromatic , Disinfection , Halogenation , Water Purification , Kinetics , Amino Acids, Aromatic/chemistry , Water Purification/methods , Disinfectants/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Environ Pollut ; 348: 123883, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548154

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Environmental Pollutants , Flame Retardants , Humans , Flame Retardants/metabolism , Triazines/analysis , Cytochrome P-450 Enzyme System/metabolism , Biotransformation , Oxidation-Reduction
4.
Molecules ; 29(2)2024 Jan 13.
Article En | MEDLINE | ID: mdl-38257310

The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.


Levofloxacin , Water Purification , Levofloxacin/pharmacology , Sulfaphenazole , Chloramines/pharmacology , Disinfection , Anti-Bacterial Agents/pharmacology
5.
Front Plant Sci ; 14: 1297546, 2023.
Article En | MEDLINE | ID: mdl-38098791

Anisodus tanguticus is a valuable plant for extracting tropane alkaloids. However, the mechanisms by which plant microbiome mediate the accumulation of tropane alkaloids in Anisodus tanguticus are still not well understood. In this study, we collected 55 wild Anisodus tanguticus populations on the Tibetan Plateau and the tropane alkaloids content, and root-related bacteria and fungi diversity were analyzed using HPLC and 16 s rDNA and ITS sequencing. The results showed that tropane alkaloids content has obvious geographical distribution characteristics. Anisodine content had a significant positive correlation with latitude, while anisodamine and atropine content had a significant negative correlation with latitude. Variation partition analysis (VPA) showed that root endophytes play a significant role in promoting tropane alkaloid production in Anisodus tanguticus roots. The root endophytes alone explained 14% of the variation, which was the largest contributor. Soil properties variables could independently explain 5% of the variation, and climate variables could explain 1% of the variation. Of these, endophytic fungi alone accounted for 11%, while bacteria explained only 5%. Random forests and Mantel test showed that different regionally enriched endophytic fungi have a greater impact on the accumulation of tropane alkaloids than the whole endophytic fungi. Richness and relative abundance of enriched endophytic fungi in Hengduan-Qilian Mountains (HQ) group has a significant positive correlation with anisodine content, while richness and relative abundance of enriched endophytic fungi in Himalayas-Hengduan Mountains (HH) group has a significant positive correlation with anisodamine and atropine content. And, these enriched endophytic fungi have high network connectivity and distributed in separate network modules. This study further confirmed that endophytes were closely related to tropane alkaloids accumulation in Anisodus tanguticus and contribute to promote sustainable development, cultivation, and precision medicine of Anisodus tanguticus.

6.
Environ Sci Pollut Res Int ; 30(33): 80828-80843, 2023 Jul.
Article En | MEDLINE | ID: mdl-37308622

Urbanization and eco-efficiency are two interactive systems, contributing to sustainable urban development jointly. However, the synchronized development between them has not received sufficient attention. In light of this gap, this paper conducts an analysis on seeking the synchronized development between sustainable urbanization and eco-efficiency in the context of China. The aim of this study is to uncover the spatial and temporal performance of the synchronized relationship between urbanization process (UP) and eco-efficiency (EE) in a sample of 255 Chinese cities. To this end, entropy method, super efficiency SBM and coupling coordination degree model are employed to conduct the research analysis, covering the period of 2005 to 2019. The findings of this study reveal that (1) there is about 97% of the surveyed cities that exhibit a moderate level of coupling coordination between urbanization process and eco-efficiency (CC-UE). (2) Spatial disparities in the performance of CC-UE are evident, with cities in South and Southeast China demonstrating better CC-UE performance than their counterparts. However, this disparity has been gradually diminishing in recent years. (3) Local perspective presented an evident spatial autocorrelation within the 255 cities analyzed. These research findings provide valuable insights not only for the policy-makers and practitioners to adopt measures for achieving a synchronized development between urbanization process and eco-efficiency in the Chinese context, but also for further studies on sustainable development in the international context.


Sustainable Development , Urbanization , Cities , China , Efficiency , Economic Development
7.
Environ Pollut ; 333: 122088, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37348694

As a novel chiral neonicotinoid insecticide, Paichongding (IPP) has been widely applied in agriculture due to its excellent insecticidal activity. However, the enantioselective metabolism of IPP stereoisomers (5R7R-IPP, 5S7S-IPP, 5R7S-IPP, and 5S7R-IPP) mediated by enzymes in non-target organisms, especially the cytochrome P450s (CYPs), remains unknown. To address this knowledge gap, we developed an integrated computational framework to elucidate the binding interactions and enantioselective metabolism of IPP stereoisomers in human CYP3A4. The results reveal that 5R7R-IPP shows much stronger binding affinity to CYP3A4 than 5S7S-IPP, while enantiomers 5R7S-IPP and 5S7R-IPP have no essential difference in their binding potential, owing to their specific interactions with key CYP3A4 residues. Although enantiomers 5R7R-IPP and 5S7S-IPP feature distinct binding modes resulting from the chiral differences, their transformation activities are slightly different, with C5 and C13 being the primary metabolic sites, respectively. In contrast, CYP3A4 preferably metabolizes 5R7S-IPP over 5S7R-IPP. The metabolism of epimers 5R7R-IPP and 5R7S-IPP share C5-hydroxylation routes due to the conserved 5R-conformaitons, but differ with the transformation routes at C11/C13 and C3 sites. The 7R-chirality of 5S7R-IPP significantly reduces the metabolic potency compared to 5S7S-IPP. CYP3A4-catalyzed hydroxylation and desaturation of IPP stereoisomers generate various chiral metabolites, with C5- and C13-hydroxyIPPs further transforming into depropylated products. Furthermore, the toxicity assessment reveals that IPP, along with the majority of its hydroxylated, desaturated, and depropylated metabolites, can potentially induce adverse effects on human health, specifically hepatotoxicity, respiratory toxicity, and carcinogenicity. This study provides valuable insights into the enantioselective fate of chiral IPP metabolism by CYP3A4, and the identified metabolites can serve as potential biomarkers for monitoring IPP exposure and associated health risk in human body.


Insecticides , Humans , Insecticides/metabolism , Cytochrome P-450 CYP3A , Stereoisomerism , Biodegradation, Environmental , Cytochrome P-450 Enzyme System
8.
Sci Total Environ ; 891: 164503, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37257598

Nicotine is the most abundant alkaloid compound in cigarette smoke and a known "emerging contaminant" in gas and aqueous environments. The main environmental behavior of nicotine is to be deposited on various surfaces. Aerosol droplets have a rich specific surface area, which has a great influence on air quality and human health. However, the microscopic interaction between aqueous nanoparticles and nicotine has not been revealed. In this work, the theoretical simulation of the adsorption and reaction properties of nicotine onto aerosol droplets is performed. The strong preference for nicotine on aqueous particle surfaces is firstly proven, and its interface retention rate is about 73 %, 4-7 times larger than that in the air/water phase. The k value of the interface reaction (heterogeneous reaction) is 4.34 × 10-9 cm3 molecule-1 s-1, which is about 80 and 571 times higher than that of the gaseous and aqueous reactions (homogeneous reaction). Interface environment can promote the oxidation of nicotine by •OH, and indirectly promote the rapid generation of toxic HNCO. The reaction rate constant of nicotine with •OH decreases with the increase of aerosol acidity, subsequently impeding the formation of HNCO. Considering the larger rate constant at the interface environment, the total effect of aqueous aerosol should be to improve the formation of HNCO. This work provides insight into the adsorption and oxidation of nicotine on the surface of the aerosol and is helpful in accurately evaluating its environmental fate and risk.

10.
Phytother Res ; 37(8): 3342-3362, 2023 Aug.
Article En | MEDLINE | ID: mdl-36974424

Chinese herb Radix sophorae tonkinensis extract oxymatrine shows anticancer effects. This study evaluated the role of oxymatrine in colorectal cancer (CRC) and the underlying molecular events in vitro and in vivo. CRC cells were treated with different doses of oxymatrine to assess cell viability, reactive oxygen species production, gene expression, and gene alterations. Meanwhile, mouse xenograft and liver metastasis models were used to assess the effects of oxymatrine using histology examination, transmission electron microscopy, and Western blot, respectively. Our results showed that oxymatrine treatment triggered CRC cell mitophagy to inhibit CRC cell growth, migration, invasion, and metastasis in vitro and in vivo. At the gene level, oxymatrine inhibited LRPPRC to promote Parkin translocation into the mitochondria and reduce the mitophagy-activated NLRP3 inflammasome. Thus, oxymatrine had an anticancer activity through LRPPRC inhibition, mitophagy induction, and NLRP3 inflammasome suppression in the CRC cell xenograft and liver metastasis models. In conclusion, the study demonstrates the oxymatrine anti- CRC activity through its unique role in regulating CRC cell mitophagy and NLRP3 inflammasome levels in vitro and in vivo.


Alkaloids , Colorectal Neoplasms , Liver Neoplasms , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy/physiology , Alkaloids/pharmacology , Colorectal Neoplasms/drug therapy , Liver Neoplasms/drug therapy
11.
Chemosphere ; 311(Pt 1): 136920, 2023 Jan.
Article En | MEDLINE | ID: mdl-36273606

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been identified as the strong endocrine disrupting chemicals to humans, which show structural similarity with endogenous thyroid hormones (THs) and thus disrupt the functioning of THs through competitive binding with TH receptors (TRs). Although previous studies have reported the hormone activities of some OH-PBDEs on TH receptor ß (TRß), the interaction mechanism remains unclear. Furthermore, hydroxyl dissociation of OH-PBDEs may alter their TR disrupting activities, which has not yet been investigated in depth. In this work, we selected 18 OH-PBDEs with neutral and anionic forms and performed molecular dynamics (MD) simulations to estimate their binding interactions with the ligand binding domain (LBD) of TRß. The results demonstrate that most of OH-PBDEs have stronger binding affinities to TRß-LBD than their anionic counterparts, and the hydroxyl dissociation of ligands differentiate the major driving force for their binding. More Br atoms in OH-PBDEs can result in stronger binding potential with TRß-LBD. Moreover, 5 hydrophobic residues, including Met313, Leu330, Ile276, Leu346, and Phe272, are identified to have important contributions to bind OH-PBDEs. These results clarify the binding mechanism of OH(O-)-PBDEs to TRß-LBD at the molecular level, which can provide a solid theoretical basis for accurate assessment of TH disrupting effects of these chemicals.


Halogenated Diphenyl Ethers , Molecular Dynamics Simulation , Humans , Halogenated Diphenyl Ethers/metabolism , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Protein Binding/physiology , Thyroid Hormone Receptors beta/metabolism , Hydroxylation
12.
Sci Total Environ ; 856(Pt 2): 159273, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36209887

Nitrogenous disinfection byproducts (N-DBPs), such as halocetamides (HAcAms), haloacetonitriles (HANs) and halonitromethanes (HNMs), are emerging DBPs in drinking water. They are more toxic than currently regulated DBPs, attracting more attention to their toxic effects and mechanism. In this study, human embryonic kidney (HEK) 293T cells were employed to explore the cytotoxicity of 29 N-DBPs. The influence of molecular structures and different halogenations on cytotoxicity has been comparatively analyzed. As toxicity is the downstream of chemico-biological interactions, the thiol reactivity of 29 N-DBPs has thus been evaluated by using glutathione (GSH) as a model nucleophile, which is the most prevalent cellular thiol and acts as an antioxidant to protect cells by detoxifying electrophilic compounds. Results show that the cytotoxicity of N-DBPs follows by the order of HAcAms > HANs > HNMs, which is different from their reactivity with GSH (the median of kGSH ranks as HNMs > HAcAms > HANs). However, a significant correlation (p < 0.001) between log kGSH and log IC50 (concentration causing 50% inhibition) has been respectively observed for HAcAms and HANs subset and HNMs subset, indicating such chemical reaction is a probable trigger for these DBPs to result in cytotoxicity. Finally, two separate quantitative structure - activity relationship (QSAR) models based on HANs & HAcAms subset and HNMs subset have been developed for estimating IC50 values. The good statistical performance makes the models possible to quickly and accurately predict IC50 values of other N-DBPs, providing basic data for their health risk assessment and greatly reducing in vivo and in vitro experiments.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Humans , Disinfection/methods , Water Purification/methods , Disinfectants/toxicity , Disinfectants/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Halogenation , Sulfhydryl Compounds
13.
Molecules ; 27(21)2022 Nov 06.
Article En | MEDLINE | ID: mdl-36364435

Polycyclic aromatic hydrocarbons (PAHs) and their oxygen/nitrogen derivatives released into the atmosphere can alternate between a gas phase and a particulate phase, further affecting their environmental behavior and fate. The gas/particulate partition coefficient (KP) is generally used to characterize such partitioning equilibrium. In this study, the correlation between log KP of fifty PAH derivatives and their n-octanol/air partition coefficient (log KOA) was first analyzed, yielding a strong linear correlation (R2 = 0.801). Then, Gaussian 09 software was used to calculate quantum chemical descriptors of all chemicals at M062X/6-311+G (d,p) level. Both stepwise multiple linear regression (MLR) and support vector machine (SVM) methods were used to develop the quantitative structure-property relationship (QSPR) prediction models of log KP. They yield better statistical performance (R2 > 0.847, RMSE < 0.584) than the log KOA model. Simulation external validation and cross validation were further used to characterize the fitting performance, predictive ability, and robustness of the models. The mechanism analysis shows intermolecular dispersion interaction and hydrogen bonding as the main factors to dominate the distribution of PAH derivatives between the gas phase and particulate phase. The developed models can be used to predict log KP values of other PAH derivatives in the application domain, providing basic data for their ecological risk assessment.


Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Nitrogen/analysis , Oxygen/analysis , Atmosphere/chemistry , 1-Octanol , Dust/analysis
14.
Ecotoxicol Environ Saf ; 245: 114111, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-36155337

Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (X-PAHs), which generally produced from photochemical and thermal reactions of parent PAHs, widely exist in the environment. They are semi-volatile organic chemicals (SVOCs) and the partitioning between gas/particulate phases affects their environmental migration, transformation and fate, which further impacts their toxicity and health risk to human. However, there is a large data missing of the experimental distribution ratio in the atmospheric particulate phase (f), especially for X-PAHs. In this study, we first checked the correlation between experimental f values of 53 PAH derivatives and their octanol-air partitioning coefficients (log KOA), which is frequently used to characterize the distribution of chemicals in organic phase, and yielded R2 = 0.803. Then, quantum chemical descriptors derived from molecular structural optimization by M06-2X/6-311 +G (d,p) method were further employed to develop Quantitative Structure-Property Relationship (QSPR) model. The model contains two descriptors, the average molecular polarizability (α) and the equilibrium parameter of molecular electrostatic potential (τ), and yields better performance with R2 = 0.846 and RMSE = 0.122. The mechanism analysis and validation results by different strategies prove that the model can reveal the molecular properties that dominate the distribution between gas and particulate phases and it can be used to predict f values of other PAHs/X-PAHs, providing basic data for their environmental ecological risk assessment.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Air Pollutants/analysis , Coal/analysis , Dust/analysis , Environmental Monitoring/methods , Humans , Octanols/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Volatile Organic Compounds/analysis
15.
Molecules ; 27(9)2022 Apr 28.
Article En | MEDLINE | ID: mdl-35566150

Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites.


Flame Retardants , Biotransformation , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Humans , Organophosphates , Organophosphorus Compounds , Phosphates
16.
Environ Int ; 164: 107258, 2022 06.
Article En | MEDLINE | ID: mdl-35483183

Potential immune responses resulting from exposure to metal oxide nanoparticles (MeONPs) have been the subject of intensive discussion in the last decade. Despite the extensive use of MeONPs in several applications, their toxic effects on immune cells have rarely been predicted in silico because of the complexity of immune responses and the complicated properties of MeONPs. In the present study, machine learning (ML) methods coupled with high-throughput in vitro bioassays were used to develop models for predicting the toxicity of MeONPs in immune cells. An ML model with a high prediction accuracy (97% and 96% in the training and test sets, respectively) was constructed by resolving the class imbalance problem in training and applying an ensembled algorithm. Further, to verify the model, MeONPs outside the scope of the datasets were selected to examine their cytotoxicity experimentally. The model was validated against independent MeONPs, with an accuracy of 91%. ML methods coupled with intracellular imaging revealed that the toxic ions released in the lysosome were an important determinant of toxicity in immune cells. Furthermore, ζ-potential, electronegativity, and size are crucial factors for predicting nanotoxicity. We believe the established modeling framework will provide useful insights for designing and applying safe nanoparticles and facilitating decision-making for environmental and health protection.


Metal Nanoparticles , Oxides , Lysosomes , Machine Learning , Metal Nanoparticles/toxicity , Organic Chemicals , Oxides/toxicity
17.
ACS Appl Bio Mater ; 5(4): 1756-1765, 2022 04 18.
Article En | MEDLINE | ID: mdl-35323009

Apoferritin can act as a scaffold for functionalization in the inner and outer surfaces. However, traditional covalent modification methods have a risk of disrupting the structure and physicochemical properties of apoferritin. Herein, we report a method for designing versatile apoferritin-based nanosystems through noncovalent interaction between a PEGylated [FeFe]-hydrogenase mimic (FeFe-PEG-N3) and apoferritin. FeFe-PEG-N3 can be anchored into the threefold channels of apoferritin via program injection, at a number of ∼8 per protein. We also engineered apoferritin with an FeFe-PEG-N3/ATRP initiator conjugate for in situ and noninvasive atom transfer radical polymerization (ATRP) at the apoferritin surface. This "grafting-from" method for noncovalent apoferritin engineering has the advantages of simple preparation, good controllability, and high efficiency and affords opportunities for the construction of multifunctional apoferritin-based nanosystems for broad applications such as drug delivery and catalysis.


Hydrogenase , Apoferritins , Hydrogenase/chemistry , Polyethylene Glycols/chemistry , Polymerization , Polymers/chemistry
18.
Article En | MEDLINE | ID: mdl-35206502

Unlike their counterparts that are used for container or municipal solid waste hauling, or their peers of taxies and other commercial vehicles, construction waste hauling trucks (CWHTs) are heterogeneous in that they transport construction waste from construction sites to designated disposal facilities. Depending on the intensity of the construction activities, there are many CWHTs in operation, imposing massive impacts on a region's transportation system and natural environment. However, such impacts have rarely been documented. This paper has analyzed CWHTs' freight characteristics and their carbon emission by harnessing a big dataset of 112,942 construction waste transport trips in Hong Kong in May 2015. It has been observed that CWHTs generate 4544 daily trips with 307.64 tons CO2-eq emitted on working days, and 553 daily trips emitting 28.78 tons CO2-eq on non-working days. Freight carbon emission has been found to be related to the vehicle type, transporting weight, and trip length, while the trip length is the most influential metric to carbon emission. This research contributes to the understanding of freight characteristics by exploiting a valuable big dataset and providing important benchmarking metrics for monitoring the effectiveness of policy interventions related to construction waste transportation planning and carbon emission.


Carbon , Data Science , Hong Kong , Motor Vehicles , Solid Waste
19.
Chemosphere ; 286(Pt 2): 131708, 2022 Jan.
Article En | MEDLINE | ID: mdl-34352543

Halophenols (XPs) have aroused great interests due to their high toxicity and low biodegradability. Previous experimental studies have shown that XPs can be catalytically transformed into epoxides and haloquinones by cytochrome P450 enzymes (CYPs). However, these metabolites have never been detected directly. Moreover, the effects of the reaction site and the type and number of halogen substituents on the biotransformation reactivity of halophenols still remain unknown. In this work, we performed density functional theory (DFT) calculations to simulate the CYP-mediated biotransformation of 36 XPs with mono-, di-, and tri-halogen (F, Cl, and Br) substitutions to unravel the mechanism and relevant kinetics of XPs epoxidation. The whole epoxidation process consists of initial rate-determining O-addition and subsequent ring-closure steps. The simulation results show that the epoxidation in low-spin (LS) state is kinetically preferred over that in high-spin (HS) state, and the formation of epoxide metabolite is strongly exothermic. For all XPs, the epoxidation reactivity follows the order of ortho/para O-addition > meta O-addition. Moreover, the O-addition with higher energy barriers roughly corresponds to chlorophenols and fluorophenols with more halogen atoms. Compared with dichlorophenols, the additional ortho-Cl substitution on trichlorophenols can slightly increase the energy barriers of meta O-addition. By contrast, the additional inclusion of an ortho-Cl to monochlorophenols enhances the meta O-addition reactivity of dichlorophenols. Overall, the present work clarifies the biotransformation routes of XPs to produce epoxides, and identifies the key factors affecting the epoxidation reactivity, which are beneficial in understanding comprehensively the metabolic fate and toxicity of XPs.


Cytochrome P-450 Enzyme System , Epoxy Compounds , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Oxidation-Reduction
20.
Chemosphere ; 263: 128353, 2021 Jan.
Article En | MEDLINE | ID: mdl-33297275

Hydroxylated bromodiphenyl ethers (OH-BDEs) have raised great concern due to their potential endocrine disrupting effects on humans. In vitro experiments have indicated OH-BDEs can inhibit the activity of thyroid hormone (TH) sulfotransferases (SULTs); however, the molecular mechanism has not been investigated in depth. In this work, we employed 17 OH-BDEs with five or fewer Br atoms, and performed integrated computational simulations to unravel the possible inhibition mechanism of OH-BDEs on human SULT1A1. The molecular docking results demonstrate that OH-BDEs form hydrogen bonds with residues Lys106 and His108, and the neutral OH-BDEs show comparable binding energies with their anionic counterparts. The further hybrid quantum mechanical/molecular mechanical (QM/MM) calculations unravel a metabolic mechanism of OH-BDEs comprised by proton abstraction and sulfation steps. This mechanism is involved in the SULT1A1 inhibition by some OH-BDEs comprised of three or fewer Br atoms, while other OH-BDEs likely only form ternary complexes to competitively inhibit SULT1A1 activity. Moreover, the effect of the hydroxyl group of OH-BDEs on SULT1A1 inhibition potential follows the order of ortho-OH BDE > meta-OH BDE > para-OH BDE. These results provide an insight into the inhibition mechanism of OH-BDEs to SULT1A1 at the molecular level, which are beneficial in illuminating the molecular initiating events involved in the TH disruption of OH-BDEs.


Halogenated Diphenyl Ethers , Thyroid Hormones , Arylsulfotransferase/genetics , Halogenated Diphenyl Ethers/toxicity , Humans , Molecular Docking Simulation , Sulfotransferases
...