Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38197664

RESUMEN

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Asunto(s)
Lubina , Rhabdoviridae , Vacunas , Animales , Femenino , Simulación del Acoplamiento Molecular , Epítopos , Glicoproteínas , Desarrollo de Vacunas
2.
J Virol ; 97(4): e0005023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975794

RESUMEN

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Asunto(s)
Formación de Anticuerpos , Enfermedades de los Peces , Infecciones por Virus ARN , Tilapia , Vacunas Virales , Técnicas de Visualización de Superficie Celular , Simulación por Computador , Epítopos/inmunología , Vacunas Virales/inmunología , Formación de Anticuerpos/inmunología , Tilapia/virología , Línea Celular , Virus ARN/inmunología , Animales , Anticuerpos Antivirales/sangre , Inmunidad Humoral/inmunología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología
3.
Virology ; 580: 41-49, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746063

RESUMEN

An infectious disease emerged in recent years, Tilapia Lake Virus Disease (TiLVD), has severely restricted the development of global tilapia industry. Vaccination has proved potential strategy to prevent its causative agent Tilapia Lake Virus (TiLV) infectious. However, the response intensity of subunit vaccine is limited by its low immunogenicity, thus inclusion of adjuvants is required. Thus, we prepared a biomimetic nano-system (Cs-S2@M-M) with a particle size of ∼100 nm and an encapsulation efficiency of about 79.15% based on erythrocyte membrane. The immune response was detected after intramuscular injection to assess the effectiveness of the vaccine. The biomimetic system significantly up-regulates the expression of immune genes, enhances the activity of non-specific immune-related enzymes (P < 0.05) and improved relative percentage survival by 17.4%-26.1% in TiLV challenge. The biomimetic nano-system based on erythrocyte membrane induced significant immune response in tilapia and enhanced protection against TiLV, promising as a model for fish vaccines.


Asunto(s)
Enfermedades de los Peces , Orthomyxoviridae , Tilapia , Animales , Membrana Eritrocítica , Biomimética , Orthomyxoviridae/genética
4.
Int J Mol Sci ; 17(2)2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26840300

RESUMEN

MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.


Asunto(s)
Empalme Alternativo , MicroARNs/genética , Desarrollo de Músculos , Proteínas Musculares/genética , Proteínas de Unión al ARN/metabolismo , Animales , Bovinos , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas Musculares/metabolismo , Proteínas de Unión al ARN/genética
5.
Huan Jing Ke Xue ; 37(6): 2322-2328, 2016 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-29964903

RESUMEN

The residential areas, science and education areas, urban green lands, commercial districts, urban arterial roads, industrial zones and urban and rural junction districts in seven different functional zones of Luoyang City were taken as research subjects, and sixty-three soil samples were gathered. The concentrations of soil heavy metals were measured and their pollution levels were evaluated by single pollution index and Nemerow complex pollution indices. The ecological risks of soil heavy metals were discussed with Hakanson potential ecological risk index (RI) and their geneses and sources were indicated by the principal component analysis (PCA). The results showed that the average level of all heavy metals exceeded the background values of Henan Province. The pollution degree of single gene index was in the following order:Cd> Zn> Pb> Cu> Ni> Cr. Nemerow complex pollution indices indicated heavy metals had the highest concentration and the heaviest pollution in industrial zones. A single heavy metal potential ecological harm (Eri) showed Cd had the highest risk index. RI was ranked as industrial zones> urban arterial roads> commercial districts> residential areas> science and education areas> urban green lands> rural junction districts. The heavy metal pollution in industrial zones, urban arterial roads and commercial districts reached strong levels, and the pollution in residential areas, science and education areas, urban green lands reached moderate risk levels, but that in rural junction districts belonged to slight risk level. Cu, Zn, Pb and Cd were called anthropogenic factors and came from industrial wastes and transport emissions, but Cr and Ni were explained as natural factors and their contents depended upon the parent materials of soil.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Ciudades , Medición de Riesgo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...