Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 17(1): 25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360683

RESUMEN

BACKGROUND: Bioconversion of plant biomass into biofuels and bio-products produces large amounts of lignin. The aromatic biopolymers need to be degraded before being converted into value-added bio-products. Microbes can be environment-friendly and efficiently degrade lignin. Compared to fungi, bacteria have some advantages in lignin degradation, including broad tolerance to pH, temperature, and oxygen and the toolkit for genetic manipulation. RESULTS: Our previous study isolated a novel ligninolytic bacterial strain Erwinia billingiae QL-Z3. Under optimized conditions, its rate of lignin degradation was 25.24% at 1.5 g/L lignin as the sole carbon source. Whole genome sequencing revealed 4556 genes in the genome of QL-Z3. Among 4428 protein-coding genes are 139 CAZyme genes, including 54 glycoside hydrolase (GH) and 16 auxiliary activity (AA) genes. In addition, 74 genes encoding extracellular enzymes are potentially involved in lignin degradation. Real-time PCR quantification demonstrated that the expression of potential ligninolytic genes were significantly induced by lignin. 8 knock-out mutants and complementary strains were constructed. Disruption of the gene for ELAC_205 (laccase) as well as EDYP_48 (Dyp-type peroxidase), ESOD_1236 (superoxide dismutase), EDIO_858 (dioxygenase), EMON_3330 (monooxygenase), or EMCAT_3587 (manganese catalase) significantly reduced the lignin-degrading activity of QL-Z3 by 47-69%. Heterologously expressed and purified enzymes further confirmed their role in lignin degradation. Fourier transform infrared spectroscopy (FTIR) results indicated that the lignin structure was damaged, the benzene ring structure and groups of macromolecules were opened, and the chemical bond was broken under the action of six enzymes encoded by genes. The abundant enzymatic metabolic products by EDYP_48, ELAC_205 and ESOD_1236 were systematically analyzed via liquid chromatography-mass spectrometry (LC-MS) analysis, and then provide a speculative pathway for lignin biodegradation. Finally, The activities of ligninolytic enzymes from fermentation supernatant, namely, LiP, MnP and Lac were 367.50 U/L, 839.50 U/L, and 219.00 U/L by orthogonal optimization. CONCLUSIONS: Our findings provide that QL-Z3 and its enzymes have the potential for industrial application and hold great promise for the bioconversion of lignin into bioproducts in lignin valorization.

2.
Biotechnol J ; 17(11): e2100638, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35894173

RESUMEN

Plants secrete sugars from their roots into the soil, presumably to support beneficial plant-microbe interactions. Accordingly, manipulation of sugar secretion might be a viable strategy to enhance plant health and productivity. To evaluate the effect of increased root sugar secretion on plant performance and the soil microbiome, we overexpressed glucose and sucrose-specific membrane transporters in root epidermal cells of the model plant Arabidopsis thaliana. These plants showed strongly increased rates of sugar secretion in a hydroponic culture system. When grown on soil, the transporter-overexpressor plants displayed a higher photosynthesis rate, but reduced shoot growth compared to the wild-type control. Amplicon sequencing and qPCR analysis of rhizosphere soil samples indicated a limited effect on the total abundance of bacteria and fungi, but a strong effect on community structure in soil samples associated with the overexpressors. Notable changes included the increased abundance of bacteria belonging to the genus Rhodanobacter and the fungi belonging to the genus Cutaneotrichosporon, while Candida species abundance was reduced. The potential influences of the altered soil microbiome on plant health and productivity are discussed. The results indicate that the engineering of sugar secretion can be a viable pathway to enhancing the carbon sequestration rate and optimizing the soil microbiome.


Asunto(s)
Arabidopsis , Azúcares/metabolismo , Raíces de Plantas , Suelo , Rizosfera , Proteínas de Transporte de Membrana/metabolismo , Hongos/genética , Hongos/metabolismo , Bacterias/metabolismo , Microbiología del Suelo
3.
Molecules ; 26(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34885803

RESUMEN

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Brassica napus/microbiología , Brassica napus/fisiología , Pared Celular/metabolismo , Pared Celular/microbiología , Hongos/enzimología , Interacciones Huésped-Patógeno , Hidrólisis , Malus/microbiología , Malus/fisiología , Polisacáridos/metabolismo , Triticum/microbiología , Triticum/fisiología , Madera/microbiología , Madera/fisiología
4.
Molecules ; 26(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34576992

RESUMEN

The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 µg/mL and 83.41 µg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9T using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9T on the basis of DNA-DNA hybridization and polar lipid analysis compared with YL28-9T. On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas/química , Pedobacter/aislamiento & purificación , Pedobacter/fisiología , Sinorhizobium meliloti/aislamiento & purificación , Sinorhizobium meliloti/fisiología , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Clima Desértico , Matriz Extracelular de Sustancias Poliméricas/genética , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Espacio Extracelular/química , Ácidos Grasos/análisis , Metales Pesados/farmacología , Hibridación de Ácido Nucleico , Pedobacter/citología , Pedobacter/efectos de los fármacos , Filogenia , ARN Ribosómico 16S/genética , Sinorhizobium meliloti/citología , Sinorhizobium meliloti/efectos de los fármacos , Microbiología del Suelo
5.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32471912

RESUMEN

Filamentous fungi are intensively used for producing industrial enzymes, including lignocellulases. Employing insoluble cellulose to induce the production of lignocellulases causes some drawbacks, e.g., a complex fermentation operation, which can be overcome by using soluble inducers such as cellobiose. Here, a triple ß-glucosidase mutant of Neurospora crassa, which prevents rapid turnover of cellobiose and thus allows the disaccharide to induce lignocellulases, was applied to profile the proteome responses to cellobiose and cellulose (Avicel). Our results revealed a shared proteomic response to cellobiose and Avicel, whose elements included lignocellulases and cellulolytic product transporters. While the cellulolytic proteins showed a correlated increase in protein and mRNA levels, only a moderate correlation was observed on a proteomic scale between protein and mRNA levels (R2 = 0.31). Ribosome biogenesis and rRNA processing were significantly overrepresented in the protein set with increased protein but unchanged mRNA abundances in response to Avicel. Ribosome biogenesis, as well as protein processing and protein export, was also enriched in the protein set that showed increased abundance in response to cellobiose. NCU05895, a homolog of yeast CWH43, is potentially involved in transferring a glycosylphosphatidylinositol (GPI) anchor to nascent proteins. This protein showed increased abundance but no significant change in mRNA levels. Disruption of CWH43 resulted in a significant decrease in cellulase activities and secreted protein levels in cultures grown on Avicel, suggesting a positive regulatory role for CWH43 in cellulase production. The findings should have an impact on a systems engineering approach for strain improvement for the production of lignocellulases.IMPORTANCE Lignocellulases are important industrial enzymes for sustainable production of biofuels and bio-products. Insoluble cellulose has been commonly used to induce the production of lignocellulases in filamentous fungi, which causes a difficult fermentation operation and enzyme loss due to adsorption to cellulose. The disadvantages can be overcome by using soluble inducers, such as the disaccharide cellobiose. Quantitative proteome profiling of the model filamentous fungus Neurospora crassa revealed cellobiose-dependent pathways for cellulase production, including protein processing and export. A protein (CWH43) potentially involved in protein processing was found to be a positive regulator of lignocellulase production. The cellobiose-dependent mechanisms provide new opportunities to improve the production of lignocellulases in filamentous fungi.


Asunto(s)
Celobiosa/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Proteoma/metabolismo , beta-Glucosidasa/genética , Biocombustibles/microbiología , Celulosa/metabolismo , Proteínas Fúngicas/genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Proteoma/genética , beta-Glucosidasa/deficiencia
6.
Int J Syst Evol Microbiol ; 68(8): 2523-2529, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29927365

RESUMEN

A Gram-staining-negative, rod-shaped, strictly aerobic, non-motile, non-spore-forming, orange bacterium, which was designated strain YL28-9T, was isolated from sandy soil in the district of Yulin, Shaanxi province, PR China, and was characterized by using a polyphasic taxonomic approach. The optimal growth conditions of the strain were 30 °C, pH 7.0, 0 % (w/v) NaCl. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that YL28-9T represented a member of the genus Pedobacter and showed the highest sequence similarity to Pedobacter rhizosphaeraeKACC 14938T (95.1 %). The genomic DNA G+C content of this strain was 50.4 mol%, which was out of the range reported for the other strains of members of the genus Pedobacter. The only respiratory quinone detected in YL28-9T was menaquinone-7 (MK-7). The predominant cellular fatty acids were identified as iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH. The major polar lipid was phosphatidylethanolamine. On the basis of the results of phenotypic, genotypic, chemotaxonomic and phylogenetic analysis, YL28-9T could be distinguished from the most closely related species of the genus Pedobacter. It is evident from the derived data that YL28-9T represents a novel species of the genus Pedobacter,for which the name Pedobacter yulinensis sp. nov. is proposed. The type strain is YL28-9T (=CGMCC 1.16050T=KCTC 62104T). An emended description of the genus Pedobacteris proposed.


Asunto(s)
Pedobacter/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Pedobacter/genética , Pedobacter/aislamiento & purificación , Fosfatidiletanolaminas/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
PLoS One ; 13(5): e0198309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795699

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0140962.].

8.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079625

RESUMEN

Polyvinyl alcohol (PVA) is used widely in industry, and associated environmental pollution is a serious problem. Herein, we report a novel, efficient PVA degrader, Stenotrophomonas rhizophila QL-P4, isolated from fallen leaves from a virgin forest in the Qinling Mountains. The complete genome was obtained using single-molecule real-time (SMRT) technology and corrected using Illumina sequencing. Bioinformatics analysis revealed eight PVA/vinyl alcohol oligomer (OVA)-degrading genes. Of these, seven genes were predicted to be involved in the classic intracellular PVA/OVA degradation pathway, and one (BAY15_3292) was identified as a novel PVA oxidase. Five PVA/OVA-degrading enzymes were purified and characterized. One of these, BAY15_1712, a PVA dehydrogenase (PVADH), displayed high catalytic efficiency toward PVA and OVA substrate. All reported PVADHs only have PVA-degrading ability. Most importantly, we discovered a novel PVA oxidase (BAY15_3292) that exhibited higher PVA-degrading efficiency than the reported PVADHs. Further investigation indicated that BAY15_3292 plays a crucial role in PVA degradation in S. rhizophila QL-P4. Knocking out BAY15_3292 resulted in a significant decline in PVA-degrading activity in S. rhizophila QL-P4. Interestingly, we found that BAY15_3292 possesses exocrine activity, which distinguishes it from classic PVADHs. Transparent circle experiments further proved that BAY15_3292 greatly affects extracellular PVA degradation in S. rhizophila QL-P4. The exocrine characteristics of BAY15_3292 facilitate its potential application to PVA bioremediation. In addition, we report three new efficient secondary alcohol dehydrogenases (SADHs) with OVA-degrading ability in S. rhizophila QL-P4; in contrast, only one OVA-degrading SADH was reported previously.IMPORTANCE With the widespread application of PVA in industry, PVA-related environmental pollution is an increasingly serious issue. Because PVA is difficult to degrade, it accumulates in aquatic environments and causes chronic toxicity to aquatic organisms. Biodegradation of PVA, as an economical and environment-friendly method, has attracted much interest. To date, effective and applicable PVA-degrading bacteria/enzymes have not been reported. Herein, we report a new efficient PVA degrader (S. rhizophila QL-P4) that has five PVA/OVA-degrading enzymes with high catalytic efficiency, among which BAY15_1712 is the only reported PVADH with both PVA- and OVA-degrading abilities. Importantly, we discovered a novel PVA oxidase (BAY15_3292) that is not only more efficient than other reported PVA-degrading PVADHs but also has exocrine activity. Overall, our findings provide new insight into PVA-degrading pathways in microorganisms and suggest S. rhizophila QL-P4 and its enzymes have the potential for application to PVA bioremediation to reduce or eliminate PVA-related environmental pollution.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Alcohol Polivinílico/metabolismo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Proteínas Bacterianas/metabolismo , Biología Computacional , Alineación de Secuencia , Análisis de Secuencia de ADN , Stenotrophomonas/enzimología
9.
J Biotechnol ; 246: 36-39, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28223006

RESUMEN

Bacterial endophytes with capacity to promote plant growth and improve plant tolerance against biotic and abiotic stresses have importance in agricultural practice and phytoremediation. A plant growth-promoting endophyte named Klebsiella sp. LTGPAF-6F, which was isolated from the roots of the desert plant Alhagi sparsifolia in north-west China, exhibits the ability to enhance the growth of wheat under drought stress. The complete genome sequence of this strain consists of one circular chromosome and two circular plasmids. From the genome, we identified genes related to the plant growth promotion and stress tolerance, such as nitrogen fixation, production of indole-3-acetic acid, acetoin, 2,3-butanediol, spermidine and trehalose. This genome sequence provides a basis for understanding the beneficial interactions between LTGPAF-6F and host plants, and will facilitate its applications as biotechnological agents in agriculture.


Asunto(s)
Fabaceae/microbiología , Genoma Bacteriano , Klebsiella/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Composición de Base , Mapeo Cromosómico , Sequías , Klebsiella/genética , Klebsiella/fisiología , Filogenia
10.
Antioxid Redox Signal ; 26(1): 1-14, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27324811

RESUMEN

AIMS: Eukaryotic typical 2-cysteine (Cys) peroxiredoxins (Prxs) are multifunctional proteins subjected to complex regulation and play important roles in oxidative stress resistance, hydrogen peroxide (H2O2) signaling modulation, aging, and cancer, but the information on the biochemical functions and regulation mechanisms of prokaryotic atypical 2-Cys Prxs is largely lacking. RESULTS: In this study, we show that at low peroxide concentrations, the atypical 2-Cys Prx in Corynebacterium glutamicum (CgPrx) mainly exists as monomers and displays thioredoxin (Trx)-dependent peroxidase activity. Moderate oxidative stress causes reversible S-mycothiolation of the H2O2-sensing Cys63 residue, which keeps CgPrx exclusively in dimer form with neither peroxidase nor chaperone activity. Then, the increased levels of H2O2 could act as a messenger to oxidize the redox-sensitive regulator hydrogen peroxide-inducible gene activator, leading to activation of expression of the more efficient mycothiol peroxidase and catalase to eliminate excessive peroxide. If oxidative stress is too severe, the H2O2-sensing Cys63 becomes hyperoxidized to sulfonic acid, which irreversibly inactivates the peroxidase activity, and most of CgPrx will be converted to multimeric chaperones for salvage of damaged proteins. INNOVATION: We demonstrate for the first time that atypical 2-Cys CgPrx acts as both a Trx-dependent peroxidase and a molecular chaperone and plays a regulatory role in modulating the peroxide-mediated signaling cascades. CONCLUSION: These results reveal that CgPrx functions as a multifunctional protein crucial for adapting appropriate responses to different levels of oxidative challenge in C. glutamicum. Antioxid. Redox Signal. 26, 1-14.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/genética , Cisteína/metabolismo , Disulfuros/metabolismo , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxidasa/metabolismo , Peroxirredoxinas/química , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal
11.
PLoS One ; 10(10): e0140962, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505890

RESUMEN

In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells' capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water.


Asunto(s)
Cadmio/toxicidad , Klebsiella/efectos de los fármacos , Manganeso/toxicidad , Absorción Fisicoquímica , Humanos , Klebsiella/genética , ARN Ribosómico 16S/genética , Aguas Residuales/toxicidad
12.
Antonie Van Leeuwenhoek ; 106(2): 279-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24846053

RESUMEN

A white-coloured bacterium, designated strain GTJR-20(T), was isolated from a stem of Phytolacca acinosa Roxb. collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. The novel isolate was found to grow optimally at 28-30 °C, at pH 7.5-8.0 and in the absence of NaCl. Cells were observed to be Gram-stain positive, strictly aerobic, rod-shaped and non-motile. The predominant respiratory quinone was identified as MK-7(H4) and the major cellular fatty acids were identified as iso-C16:0 (35.8 %), C18:1 ω9c (17.7 %), C17:1 ω6c (11.0 %), C17:1 ω8c (7.8 %) and C18:3 ω6c (6, 9, 12) (7.2 %). The DNA G+C content was determined to be 71.6 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GTJR-20(T) is a member of the genus Solirubrobacter and is closely related to Solirubrobacter phytolaccae GTGR-8(T) (16S rRNA gene sequence similarity, 98.4 %), Solirubrobacter soli KCTC 12628(T) (97.8 %), Solirubrobacter pauli KCTC 9974(T) (97.7 %) and Solirubrobacter ginsenosidimutans KCTC 19420(T) (97.6 %). No other recognized bacterial species showed more than 94.6 % 16S rRNA gene sequence similarity to the novel isolate. DNA-DNA relatedness values for strain GTJR-20(T) with respect to its closely related neighbours S. phytolaccae GTGR-8(T), S. soli KCTC 12628(T), S. pauli KCTC 9974(T) and S. ginsenosidimutans KCTC 19420(T) were 48.3 ± 8.6, 21.3 ± 5.2, 36.8 ± 6.2 and 36.0 ± 5.5 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain GTJR-20(T) is considered to represent a novel species of the genus Solirubrobacter, for which the name Solirubrobacter taibaiensis sp. nov. is proposed. The type strain is GTJR-20(T) (=CCTCC AB 2013308(T) = KCTC 29222(T)).


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Phytolacca/microbiología , Actinobacteria/genética , Actinobacteria/fisiología , Aerobiosis , Técnicas de Tipificación Bacteriana , Composición de Base , China , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Tallos de la Planta/microbiología , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Temperatura
13.
mBio ; 5(3): e01050-14, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24846380

RESUMEN

UNLABELLED: Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. IMPORTANCE: Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells, thus allowing the detection of protein-protein interactions in live bacterial cells. This BRET system added another useful tool to address important questions in microbiological studies.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mapeo de Interacción de Proteínas , Proteínas Bacterianas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Expresión Génica , Genes Reporteros , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sensibilidad y Especificidad
14.
Genome Announc ; 2(2)2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24699960

RESUMEN

Nafulsella turpanensis ZLM-10(T) is a slightly halophilic, Gram-negative, rod-shaped, gliding, pale-pink-pigmented bacterium in the family Flammeovirgaceae, and it shows resistance to gentamicin, kanamycin, neomycin, and streptomycin. Here, we report the genome sequence of N. turpanensis strain ZLM-10(T), which has a 4.8-Mb genome and a G+C content of 45.67%.

15.
Wei Sheng Wu Xue Bao ; 51(5): 586-94, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21800619

RESUMEN

Ibuprofen has been recognized as an environmental endocrine disruptor due to its ability to interfere with prostaglandin synthesis. In order to address the myriad challenges faced by the issue of ibuprofen in the environment, the recent research progress was summarized in this paper to characterize the ibuprofen consumption, its potential hazard, and biodegradation and degradation mechanisms. The importance and urgency to carry out the ibuprofen degradable gene cloning, its function analysis and its molecular degradation mechanisms were emphasized.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Ibuprofeno/metabolismo , Biodegradación Ambiental , Ibuprofeno/química , Ibuprofeno/uso terapéutico , Factores de Riesgo
16.
Anat Rec (Hoboken) ; 293(1): 135-40, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937642

RESUMEN

Amelotin is expressed and secreted by ameloblasts in tooth development, but amelotin distribution during enamel development is not clear. In this report, we first investigated amelotin expression in developing teeth by immunohistochemistry. Amelotin was detected in the enamel matrix at the secretion and maturation stages of enamel development. Amelotin was also observed at Tomes' processes on the apical ends of secretory ameloblasts. We then compared amelotin gene expression with those of amelogenin, enamelin, and ameloblastin in the mandibles of postnatal mice by RT-PCR. The expression of amelotin was detected as early as in postnatal day 0 mandibles and amelotin was coexpressed with amelogenin, ameloblastin, and enamelin during tooth development. These data strongly suggest that amelotin is an enamel matrix protein expressed at the secretion and maturation stages of enamel development.


Asunto(s)
Proteínas del Esmalte Dental/metabolismo , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/metabolismo , Diente Molar/crecimiento & desarrollo , Diente Molar/metabolismo , Amelogenina/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Técnicas para Inmunoenzimas , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA