Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.830
1.
J Dig Dis ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38764418

OBJECTIVES: We conducted this multicenter, retrospective cohort study aiming to evaluate the effectiveness and safety of vedolizumab (VDZ) and infliximab (IFX) in biologic-naïve patients with moderate-to-severe ulcerative colitis (UC). METHODS: Biologic-naïve patients with moderate-to-severe UC who were treated with IFX or VDZ for at least 14 weeks at three tertiary hospitals in southwest China between January 2021 and January 2023 were retrospectively included. Efficacy of the biologics was evaluated based on the steroid-free clinical remission rate, clinical remission rate, and mucosal healing rate at Weeks 14 and 52. Adverse events related to biologic use were recorded. RESULTS: Altogether 122 biologic-naïve patients with moderate-to-severe UC were included. No marked differences in the steroid-free clinical remission rate and clinical remission rate were observed between the two groups at Week 14 or Week 52 (P > 0.05). The VDZ group exhibited a higher mucosal healing rate at Week 14 compared to the IFX group (33.3% vs 16.9%, P = 0.036), while that at Week 52 did not differ between the two groups (65.6% vs 47.1%, P = 0.098). There was no statistically significant difference in the rate of adverse events between the two groups (P = 0.071). CONCLUSION: VDZ and IFX showed comparable clinical efficacy and safety profiles and can be used as viable first-line therapeutic options for biologic-naïve patients with moderate-to-severe UC.

2.
Article En | MEDLINE | ID: mdl-38767796

Ischemic heart disease (IHD) is a common clinical cardiovascular disease with high morbidity and mortality. Sodium glucose cotransporter protein inhibitor (SGLTi) is a novel hypoglycemic drug. To date, both clinical trials and animal experiments have shown that SGLTi play a protective role in IHD, including myocardial infarction (MI) and ischemia/reperfusion (I/R). The protective effects may be involved in mechanisms of energy metabolic conversion, anti-inflammation, anti-fibrosis, ionic homeostasis improvement, immune cell development, angiogenesis and functional regulation, gut microbiota regulation, and epicardial lipids. Thus, this review summarizes the above mechanisms and aims to provide theoretical evidence for therapeutic strategies for IHD.

3.
Bioact Mater ; 38: 399-410, 2024 Aug.
Article En | MEDLINE | ID: mdl-38774457

Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood. Here, this study shows that high-temperature requirement A3 (HtrA3) overcomes the physical barrier and provides anchor points through collagen IV degradation, paving the way for MSC migration. HtrA3 is upregulated in MSCs at the leading edge of bone defect during the early stage of healing. HtrA3 degrades the surrounding collagen IV, which increases the collagen network porosity and increases integrin ß1 expression. Subsequently, integrin ß1 enhances the mechanotransduction of MSCs, thus remodeling the cytoskeleton, increasing cellular stiffness and nuclear translocation of YAP, eventually promoting the migration and subsequent osteogenic differentiation of MSCs. Local administration of recombinant HtrA3 in rat cranial bone defects significantly increases new bone formation and further validates the enhancement of MSC migration. This study helps to reveal the novel roles of HtrA3, explore potential targets for regenerative medicine, and offer new insights for the development of bioactive materials.

4.
Medicine (Baltimore) ; 103(20): e38258, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758846

BACKGROUND: The aim of this study was to compare the biomechanical performance of pedicle screw construction and locking compression plate fixation in posterior pelvic ring injuries analyzed by finite element method. METHODS: A 3-dimensional finite element model of the spine-pelvis-femur complex with ligaments was reconstructed from computed tomography images. An unstable posterior pelvic ring injury was created, which was fixed with a pedicle screw construction or locking compression plate. A follower load of 400 N was applied to the upper surface of the vertebrae to simulate the upper body weight, while the ends of the proximal femurs were fixed. The construct stiffness, the maximum vertical displacement, the maximum posterior displacement, the maximum right displacement, and the overall maximum displacement of the sacrum, and stress distributions of the implants and pelvises were assessed. RESULTS: The construct stiffness of the pedicle screw model (435.14 N/mm) was 2 times that of the plate model (217.01 N/mm). The maximum vertical displacement, the maximum posterior displacement, the maximum right displacement, and the overall maximum displacement of the sacrum in the pedicle screw model were smaller than those in the plate model (0.919, 1.299, 0.259, and 1.413 mm in the pedicle screw model, and 1.843, 2.300, 1.053, and 2.895 mm in the plate model, respectively). The peak stresses of the implant and pelvis in the pedicle screw model decreased by 80.4% and 25% when compared with the plate model (44.57 and 34.48 MPa in the pedicle screw model, and 227.47 and 45.97 MPa in the plate model, respectively). CONCLUSION: The study suggested that the pedicle screw construction could provide better fixation stability than the locking compression plate and serves as the recommended fixation method for the treatment of posterior pelvic ring injuries.


Bone Plates , Finite Element Analysis , Fracture Fixation, Internal , Pedicle Screws , Pelvic Bones , Humans , Pelvic Bones/injuries , Pelvic Bones/surgery , Biomechanical Phenomena , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Tomography, X-Ray Computed , Fractures, Bone/surgery
5.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730482

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Chemokine CCL3 , Gastric Mucosa , Helicobacter Infections , Helicobacter pylori , Macrophages , Helicobacter pylori/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Animals , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastric Mucosa/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Homeostasis , Mice, Inbred C57BL , Humans , Apoptosis , Cell Proliferation , Male , RAW 264.7 Cells
7.
Phytochemistry ; 223: 114139, 2024 Jul.
Article En | MEDLINE | ID: mdl-38750707

Eleven undescribed isoquinoline alkaloids (1-8, 14, 15, and 24), along with 19 analogues (9-13, 16-23, and 25-30) were isolated from the barks of Alangium salviifolium. The structures of the undescribed compounds were elucidated through the analysis of their HR-ESI-MS, 1D and 2D NMR, IR, UV, and X-ray diffraction. The absolute configuration of 8 was established via the ECD calculation. Notably, compounds 1/2 and 3/4 were two pairs of C-14 epimers. The isolated alkaloids were evaluated for their cytotoxicity against various cancer cell lines, including SGC-7901, HeLa, K562, A549, BEL-7402, HepG2, and B16, ß-carboline-benzoquinolizidine (14-22) and cepheline-type (24-28) alkaloids exhibited remarkable cytotoxicity, with IC50 values ranging from 0.01 to 48.12 µM. Remarkably, compounds 17 and 21 demonstrated greater cytotoxicity than the positive control doxorubicin hydrochloride. Furthermore, a significant proportion of these bioactive alkaloids possess a C-1' epimer configuration. The exploration of their structure-activity relationship holds promise for directing future investigations into alkaloids derived from Alangium, potentially leading to novel insights and therapeutic advancements.


Alkaloids , Antineoplastic Agents, Phytogenic , Drug Screening Assays, Antitumor , Isoquinolines , Plant Bark , Humans , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Plant Bark/chemistry , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor , Alangiaceae/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug
8.
J Affect Disord ; 358: 383-390, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38735583

BACKGROUND: Healthier lifestyle decreased the risk of mental disorders (MDs) such as depression and anxiety. However, research on the effects of a comprehensive healthy lifestyle on their progression is lacking. METHODS: 385,704 individuals without baseline MDs from the UK Biobank cohort were included. A composite healthy lifestyle score was computed by assessing alcohol intake, smoking status, television viewing time, physical activity, sleep duration, fruit and vegetable intake, oily fish intake, red meat intake, and processed meat intake. Follow-up utilized hospital and death register records. Multistate model was used to examine the role of healthy lifestyle on the progression of specific MDs, while a piecewise Cox regression model was utilized to assess the influence of healthy lifestyle across various phases of disease progression. RESULTS: Higher lifestyle score reduced risks of transitions from baseline to anxiety and depression, as well as from anxiety and depression to comorbidity, with corresponding hazard ratios (HR) and 95 % confidence intervals (CI) of 0.94 (0.93, 0.95), 0.90 (0.89, 0.91), 0.94 (0.91, 0.98), and 0.95 (0.92, 0.98), respectively. Healthier lifestyle decreased the risk of transitioning from anxiety to comorbidity within 2 years post-diagnosis, with HR 0.93 (0.88, 0.98). Higher lifestyle scores at 2-4 years and 4-6 years post-depression onset were associated with reduced risk of comorbidity, with HR 0.93 (0.87, 0.99) and 0.92 (0.86, 0.99), respectively. LIMITATION: The generalizability to other ethnic groups is limited. CONCLUSION: This study observed a protective role of holistic healthy lifestyle in the trajectory of MDs and contributed to identifying critical progression windows.


Biological Specimen Banks , Disease Progression , Healthy Lifestyle , Humans , Male , Female , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Incidence , Aged , Adult , Comorbidity , Anxiety/epidemiology , Depression/epidemiology , Mental Disorders/epidemiology , Exercise , Proportional Hazards Models , Alcohol Drinking/epidemiology , Smoking/epidemiology , UK Biobank
9.
Drug Discov Today ; 29(7): 104014, 2024 May 03.
Article En | MEDLINE | ID: mdl-38705509

Compared to other nanovectors, liposomes exhibit unique advantages, such as good biosafety and high drug-loading capacity. However, slow drug release from conventional liposomes makes most payloads unavailable, restricting the therapeutic efficacy. Therefore, in the last ∼20 years, enzyme-responsive liposomes have been extensively investigated, which liberate drugs under the stimulation of enzymes overexpressed at disease sites. In this review, we elaborate on the research progress on enzyme-responsive liposomes. The involved enzymes mainly include phospholipases, particularly phospholipase A2, matrix metalloproteinases, cathepsins, and esterases. These enzymes can cleave ester bonds or specific peptide sequences incorporated in the liposomes for controlled drug release by disrupting the primary structure of liposomes, detaching protective polyethylene glycol shells, or activating liposome-associated prodrugs. Despite decades of efforts, there are still a lack marketed products of enzyme-responsive liposomes. Therefore, more efforts should be made to improve the safety and effectiveness of enzyme-responsive liposomes and address the issues associated with production scale-up.

10.
Exp Cell Res ; 439(1): 114060, 2024 May 07.
Article En | MEDLINE | ID: mdl-38719173

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.

12.
Comp Cytogenet ; 18: 73-95, 2024.
Article En | MEDLINE | ID: mdl-38798789

To characterize the chromosomes of the four species of Polygonatum Miller, 1754, used in traditional Chinese medicine, P.cyrtonema Hua, 1892, P.kingianum Collett et Hemsley, 1890, P.odoratum (Miller, 1768) Druce, 1906, and P.sibiricum Redouté, 1811, and have an insight into the karyotype variation of the genus Polygonatum, fluorescence in situ hybridization (FISH) with 5S and 45S rDNA oligonucleotide probes was applied to analyze the karyotypes of 9 populations of the four species. Detailed molecular cytogenetic karyotypes of the 9 populations were established for the first time using the dataset of chromosome measurements and FISH signals of 5S and 45S rDNA. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the asymmetry of the karyotypes and karyological relationships among species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters and rDNA patterns among and within species. The basic chromosome numbers detected were x = 9, 11 and 13 for P.cyrtonema, x = 15 for P.kingianum, x = 10 and 11 for P.odoratum, and x = 12 for P.sibiricum. The original basic chromosome numbers of the four species were inferred on the basis of the data of this study and previous reports. All the 9 karyotypes were of moderate asymmetry and composed of metacentric, submetacentric and subtelocentric chromosomes or consisted of two of these types of chromosomes. Seven populations have one locus of 5S rDNA and two loci of 45S rDNA, and two populations added one 5S or 45S locus. The karyological relationships among the four species revealed by comparison of rDNA patterns and PCoA based on x, 2n, TCL, CVCI, MCA and CVCL were basically accordant with the phylogenetic relationships revealed by molecular phylogenetic studies. The mechanisms of both intra- and inter-specific dysploidy in Polygonatum were discussed based on the data of this study and literature.

13.
Bio Protoc ; 14(10): e4989, 2024 May 20.
Article En | MEDLINE | ID: mdl-38798980

Calcium signalling in the endocardium is critical for heart valve development. Calcium ion pulses in the endocardium are generated in response to mechanical forces due to blood flow and can be visualised in the beating zebrafish heart using a genetically encoded calcium indicator such as GCaMP7a. Analysing these pulses is challenging because of the rapid movement of the heart during heartbeat. This protocol outlines an imaging analysis method used to phase-match the cardiac cycle in single z-slice movies of the beating heart, allowing easy measurement of the calcium signal. Key features • Software to synchronise and analyse frames from movies of the beating heart corresponding to a user-defined phase of the cardiac cycle. • Software to measure the fluorescence intensity of the beating heart corresponding to a user-defined region of interest.

14.
Int J Biol Macromol ; : 132679, 2024 May 25.
Article En | MEDLINE | ID: mdl-38801854

Uncontrollable bleeding caused by severe trauma is life-threatening. Therefore, it is of great significance to develop hemostatic materials that meet the rapid hemostasis of wounds. In this study, a water-triggered shape memory carboxylated cellulose nanofiber/sodium alginate/montmorillonite (CNSAMMTCa) composite hemostatic sponge was prepared, which can promote coagulation by concentrating the blood and activating intrinsic pathway. The anisotropic three-dimensional porous structure formed by directional freeze-drying technology improved the performance of composite sponges which showed good prospects in rapid hemostasis. The results showed that CNSAMMTCa composite sponge had good porous structure, water absorption ability, cytocompatibility and blood cell aggregation capacity. Simultaneously, we confirmed that CNSA3MMT2Ca has best coagulation performance in the mouse censored bleeding model and liver rupture bleeding model. Therefore, CNSAMMTCa composite hemostatic sponge is a safe and efficient rapid hemostatic material which is expected to become an alternative material for clinical hemostatic materials.

16.
Burns Trauma ; 12: tkae007, 2024.
Article En | MEDLINE | ID: mdl-38756185

Background: Severe burn injury causes a hypermetabolic response, resulting in muscle protein catabolism and multiple organ damage syndrome. However, this response has not yet been continuously characterized by metabolomics in patients. This study aims to quantify temporal changes in the metabolic processes of patients with severe burns. Methods: We employed 1H-nuclear magnetic resonance (NMR) spectroscopy to scrutinize metabolic alterations during the initial 35 days following burn injury in a cohort of 17 adult patients with severe burns, with 10 healthy individuals included as controls. Plasma specimens were collected from patients on postburn days 1, 3, 7, 14, 21, 28 and 35. After performing multivariate statistical analysis, repeated-measures analysis of variance and time-series analysis, we quantified changes in metabolite concentrations. Results: Among the 36 metabolites quantified across 119 samples from burn patients, branched-chain amino acids, glutamate, glycine, glucose, pyruvate, lactate, trimethylamine N-oxide and others exhibited obvious temporal variations in concentration. Notably, these metabolites could be categorized into three clusters based on their temporal characteristics. The initial response to injury was characterized by changes in lactate and amino acids, while later changes were driven by an increase in fatty acid catabolism and microbial metabolism, leading to the accumulation of ketone bodies and microbial metabolites. Conclusions: Metabolomics techniques utilizing NMR have the potential to monitor the intricate processes of metabolism in patients with severe burns. This study confirmed that the third day after burn injury serves as the boundary between the ebb phase and the flow phase. Furthermore, identification of three distinct temporal patterns of metabolites revealed the intrinsic temporal relationships between these metabolites, providing clinical data for optimizing therapeutic strategies.

17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 450-455, 2024 May 15.
Article Zh | MEDLINE | ID: mdl-38802903

OBJECTIVES: To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. METHODS: Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. RESULTS: The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. CONCLUSIONS: Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.


Stroke , Humans , Male , Infant, Newborn , Female , China/epidemiology , Stroke/epidemiology , Prognosis , Electroencephalography , Incidence , Magnetic Resonance Imaging
18.
Sci Transl Med ; 16(745): eadh1763, 2024 May.
Article En | MEDLINE | ID: mdl-38691618

An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.


Aortic Aneurysm, Abdominal , Disease Models, Animal , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Humans , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/prevention & control , Insulin-Like Growth Factor I/metabolism , Male , Swine , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Rats
19.
Bioact Mater ; 37: 378-392, 2024 Jul.
Article En | MEDLINE | ID: mdl-38689658

Posttraumatic osteoarthritis (PTOA) patients are often diagnosed by X-ray imaging at a middle-late stage when drug interventions are less effective. Early PTOA is characterized by overexpressed matrix metalloprotease 13 (MMP13). Herein, we constructed an integrated diagnosis and treatment micelle modified with MMP13 enzyme-detachable, cyanine 5 (Cy5)-containing PEG, black hole quencher-3 (BHQ3), and cRGD ligands and loaded with siRNA silencing MMP13 (siM13), namely ERMs@siM13. ERMs@siM13 could be cleaved by MMP13 in the diseased cartilage tissues to detach the PEG shell, causing cRGD exposure. Accordingly, the ligand exposure promoted micelle uptake by the diseased chondrocytes by binding to cell surface αvß3 integrin, increasing intracellular siM13 delivery for on-demand MMP13 downregulation. Meanwhile, the Cy5 fluorescence was restored by detaching from the BHQ3-containing micelle, precisely reflecting the diseased cartilage state. In particular, the intensity of Cy5 fluorescence generated by ERMs@siM13 that hinged on the MMP13 levels could reflect the PTOA severity, enabling the physicians to adjust the therapeutic regimen. Finally, in the murine PTOA model, ERMs@siM13 could diagnose the early-stage PTOA, perform timely interventions, and monitor the OA progression level during treatment through a real-time detection of MMP13. Therefore, ERMs@siM13 represents an appealing approach for early-stage PTOA theranostics.

20.
BMC Health Serv Res ; 24(1): 562, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693514

BACKGROUND: This study aimed to examine the reporting quality of existing economic evaluations for negotiated glucose-lowering drugs (GLDs) included in China National Reimbursement Drug List (NRDL) using the Consolidated Health Economic Evaluation Reporting Standards 2013 (CHEERS 2013). METHODS: We performed a systematic literature research through 7 databases to identify published economic evaluations for GLDs included in the China NRDL up to March 2021. Reporting quality of identified studies was assessed by two independent reviewers based on the CHEERS checklist. The Kruskal-Wallis test and Mann-Whitney U test were performed to examine the association between reporting quality and characteristics of the identified studies. RESULTS: We have identified 24 studies, which evaluated six GLDs types. The average score rate of the included studies was 77.41% (SD:13.23%, Range 47.62%-91.67%). Among all the required reporting items, characterizing heterogeneity (score rate = 4.17%) was the least satisfied item. Among six parts of CHEERS, results part scored least at 0.55 (score rate = 54.79%) because of the incompleteness of characterizing uncertainty. Results from the Kruskal-Wallis test and Mann-Whitney U test showed that model choice, journal type, type of economic evaluations, and study perspective were associated with the reporting quality of the studies. CONCLUSIONS: There remains room to improve the reporting quality of economic evaluations for GLDs in NRDL. Checklists such as CHEERS should be widely used to improve the reporting quality of economic researches in China.


Hypoglycemic Agents , China , Humans , Hypoglycemic Agents/economics , Hypoglycemic Agents/therapeutic use , Cost-Benefit Analysis , Reimbursement Mechanisms/standards , Negotiating
...