Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
ACS Omega ; 9(9): 10253-10266, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38463297

Inflammatory bowel disease alters the gut microbiota, causes defects in mucosal barrier function, and leads to dysregulation of the immune response to microbial stimulation. This study investigated and compared the efficacy of a candidate probiotic strain, Bacillus coagulans BC198, and its heat-killed form in treating dextran sulfate sodium-induced colitis. Both live and heat-killed B. coagulans BC198 increased gut barrier-associated protein expression, reduced neutrophil and M1 macrophage infiltration of colon tissue, and corrected gut microbial dysbiosis induced by colitis. However, only live B. coagulans BC198 could alleviate the general symptoms of colitis, prevent colon shortening, and suppress inflammation and tissue damage. At the molecular level, live B. coagulans BC198 was able to inhibit Th17 cells while promoting Treg cells in mice with colitis, reduce pro-inflammatory MCP-1 production, and increase anti-inflammatory IL-10 expression in the colonic mucosa. The live form of B. coagulans BC198 functioned more effectively than the heat-killed form in ameliorating colitis by enhancing the anti-inflammatory response and promoting Treg cell accumulation in the colon.

2.
Biochimie ; 214(Pt B): 134-144, 2023 Nov.
Article En | MEDLINE | ID: mdl-37442534

Oral dysbiosis contributes to periodontitis and has implications for systemic diseases. Diabetes mellitus is a common metabolic disorder characterized by impaired glucose regulation. AMP-activated protein kinase (AMPK) plays a vital role in regulating glucose uptake and glycogenesis in the liver. This study aimed to investigate the association between periodontal bacteria and diabetes mellitus. A clinical trial was conducted to explore the association between oral bacteria and hyperglycemia. Additionally, we elucidated the molecular mechanisms by which periodontal bacteria cause insulin resistance. In the clinical trial, we discovered significant alterations in the expression levels of Fusobacterium nucleatum (Fn) and Tannerella forsythia (Tf) in patients with diabetes compared with healthy controls. Furthermore, Fn and Tf levels positively correlated with fasting blood glucose and glycated hemoglobin (HbA1C) levels. Moreover, we explored and elucidated the molecular mechanism by which Fusobacterium nucleatum culture filtrate (FNCF) induces cytokine release via the Toll-like receptor 2 (TLR2) signaling pathway in human gingival epithelial Smulow-Glickman (S-G) cells. This study investigated the effects of cytokines on insulin resistance pathways in liver cells. The use of an extracellular signal-regulated kinase (ERK) inhibitor (U0126) demonstrated that FNCF regulates the insulin receptor substrate 1 and protein kinase B (IRS1/AKT) signaling pathway, which affects key proteins involved in hepatic glycogen synthesis, including glycogen synthase kinase-3 beta (GSK3ß) and glycogen synthase (GS), ultimately leading to insulin resistance. These findings suggest that ERK plays a crucial role in hepatocyte insulin resistance.


Diabetes Mellitus, Type 2 , Diabetes Mellitus , Insulin Resistance , Microbiota , Humans , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Glucose/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Diabetes Mellitus, Type 2/metabolism
3.
Ecotoxicol Environ Saf ; 251: 114559, 2023 Feb.
Article En | MEDLINE | ID: mdl-36669277

Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3ß (GSK3ß)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.


Chemical and Drug Induced Liver Injury , Environmental Pollutants , Humans , Liver Glycogen/metabolism , Liver Glycogen/pharmacology , Environmental Pollutants/metabolism , Glycogen Synthase/metabolism , Glycogen Synthase/pharmacology , Liver , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism
4.
Appl Biochem Biotechnol ; 195(7): 4215-4236, 2023 Jul.
Article En | MEDLINE | ID: mdl-36689162

The research of obesity and gut microbiota has been carried out for years, yet the study process was in a slow pace for several challenges to conquer. As a complex status of disorder, the contributing factors refer to gut microbiota about obesity were controversial in a wide range. In terms of proteomics, 2D-DIGE technology is a powerful method for this study to identify fecal proteins from lean microbiota in Dusp6 knockout C57BL/6J mice, exploring the protein markers of the ability resisting to diet-induced obesity (DIO) transferred to the host mice after fecal microbiota transplantation. The results showed that the fecal microbiota expressed 289 proteins differentially with 23 proteins identified, which were considered to be the reasons to assist the microbiota exhibiting distinct behavior. By means of proteomics technology, we had found that differentially expressed proteins of lean microbiota determined the lean microbial behavior might be able to resist leaky gut. To sum up our study, the proteomics strategies offered as a tool to demonstrate and analyze the features of lean microbiota, providing new speculations in the behavior about the gut microbiota reacting to DIO.


Microbiota , Obesity , Mice , Animals , Mice, Knockout , Mice, Inbred C57BL , Obesity/genetics , Diet
5.
Diabetes Metab Syndr Obes ; 15: 199-207, 2022.
Article En | MEDLINE | ID: mdl-35082506

OBJECTIVE: The present study aimed to explore the relationship between metabolic dysfunction-associated fatty liver disease (MAFLD) and gastroesophageal reflux symptoms (GERS). METHODS: The present study was a cross-sectional observational study. The study population was 3002 subjects from a single hospital who underwent a health checkup from September 1, 2019, to December 31, 2020. The diagnosis of MAFLD was based on the diagnosis of fatty liver in the subject by ultrasound or computed tomography (CT) and the presence of one of the following conditions: overweight or obesity (body mass index [BMI] ≥ 23), type 2 diabetes mellitus, and metabolic abnormalities. The subjects were divided into the GERS group (n = 305) and the non-GERS group (n = 2697) based on the presence or absence of GERS, based on the GerdQ score. RESULTS: The prevalence of MAFLD was significantly higher in the GERS group than in the non-GERS group (p = 0.001). In the univariate analysis of risk factors for GERS, MAFLD was identified as a risk factor for GERS (OR 1.5; 95% CI 1.176-1.913; p = 0.001). With adjustment of confounding factors such as BMI, waist circumference, lipid levels, and blood pressure, the correlation between MAFLD and GERS was attenuated but still significant (OR 1.408; 95% CI 1.085-1.826; p = 0.010). CONCLUSION: MAFLD might be an independent risk factor for GERS.

6.
Cancer Sci ; 113(1): 205-220, 2022 Jan.
Article En | MEDLINE | ID: mdl-34773335

Lung adenocarcinoma (ADC) is the predominant histological type of lung cancer, and radiotherapy is one of the current therapeutic strategies for lung cancer treatment. Unfortunately, biological complexity and cancer heterogeneity contribute to radioresistance development. Karyopherin α2 (KPNA2) is a member of the importin α family that mediates the nucleocytoplasmic transport of cargo proteins. KPNA2 overexpression is observed across cancer tissues of diverse origins. However, the role of KPNA2 in lung cancer radioresistance is unclear. Herein, we demonstrated that high expression of KPNA2 is positively correlated with radioresistance and cancer stem cell (CSC) properties in lung ADC cells. Radioresistant cells exhibited nuclear accumulation of KPNA2 and its cargos (OCT4 and c-MYC). Additionally, KPNA2 knockdown regulated CSC-related gene expression in radioresistant cells. Next-generation sequencing and bioinformatic analysis revealed that STAT1 activation and nuclear phospholipid scramblase 1 (PLSCR1) are involved in KPNA2-mediated radioresistance. Endogenous PLSCR1 interacting with KPNA2 and PLSCR1 knockdown suppressed the radioresistance induced by KPNA2 expression. Both STAT1 and PLSCR1 were found to be positively correlated with dysregulated KPNA2 in radioresistant cells and ADC tissues. We further demonstrated a potential positive feedback loop between PLSCR1 and STAT1 in radioresistant cells, and this PLSCR1-STAT1 loop modulates CSC characteristics. In addition, AKT1 knockdown attenuated the nuclear accumulation of KPNA2 in radioresistant lung cancer cells. Our results collectively support a mechanistic understanding of a novel role for KPNA2 in promoting radioresistance in lung ADC cells.


Adenocarcinoma of Lung/metabolism , Cell Nucleus/metabolism , Lung Neoplasms/metabolism , Phospholipid Transfer Proteins/metabolism , Radiation Tolerance , STAT1 Transcription Factor/metabolism , alpha Karyopherins/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Feedback, Physiological , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/radiation effects , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Phospholipid Transfer Proteins/genetics , STAT1 Transcription Factor/genetics , Up-Regulation , alpha Karyopherins/genetics
7.
Arch Biochem Biophys ; 713: 109058, 2021 11 30.
Article En | MEDLINE | ID: mdl-34627749

Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.


Dietary Supplements , Gastrointestinal Microbiome/drug effects , Polyporales , Proteome/metabolism , Animals , Hepatocytes/metabolism , Intestines/drug effects , Liver/drug effects , Male , Mice, Inbred C57BL
8.
Insects ; 12(9)2021 Sep 14.
Article En | MEDLINE | ID: mdl-34564267

The gypsy moth, Lymantria dispar, is a polyphagous forest pest worldwide. The baculovirus, Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) is a natural pathogen of L. dispar. The Toll-like receptors (TLR) pathway plays a crucial role in both innate and adaptive immunity in animals. However, The TLR pathway and its underlying immune mechanism against baculovirus in L. dispar have not been explored. In this study, eleven TLRs and five downstream TLR pathway components were identified and characterized from L. dispar. Structural analysis indicated that intracellular Toll/interleukin-1 receptor (TIR) domains of LdTLRs and LdMyD88 contained three conserved motifs, and the 3D structures of TIR domains of LdTLRs possessed similar patterns in components arrangement and spatial conformation. The TLR proteins of L. dispar were placed into five monophyletic groups based on the phylogenetic analysis. LdTLR1, 2, 5, 6, 7, 8 and all identified downstream TLR pathway factors were highly induced upon LdMNPV infection, indicating that the TLR pathway of L. dispar was activated and might play a role in the immune response to LdMNPV infection. Collectively, these results help elucidate the crucial role of the TLR pathway in the immune response of L. dispar against LdMNPV, and offer a foundation for further understanding of innate immunity of the pest.

9.
Antioxidants (Basel) ; 10(1)2021 Jan 13.
Article En | MEDLINE | ID: mdl-33451157

Oxidative stress generated by reactive oxygen species (ROS) plays a critical role in the pathomechanism of glaucoma, which is a multifactorial blinding disease that may cause irreversible damage within human trabecular meshwork cells (HTMCs). It is known that the transforming growth factor-ß (TGF-ß) signaling pathway is an important component of oxidative stress-induced damage related to extracellular matrix (ECM) fibrosis and activates cell antioxidative mechanisms. To elucidate the dual potential roles and regulatory mechanisms of TGF-ß in effects on HTMCs, we established an in vitro oxidative model using hydrogen peroxide (H2O2) and further focused on TGF-ß-related oxidative stress pathways and the related signal transduction. Via a series of cell functional qualitative analyses to detect related protein level alterations and cell fibrosis status, we illustrated the role of TGF-ß1 and TGF-ß2 in oxidative stress-induced injury by shTGF-ß1 and shTGF-ß2 knockdown or added recombinant human TGF-ß1 protein (rhTGF-ß1). The results of protein level showed that p38 MAPK, TGF-ß, and its related SMAD family were activated after H2O2 stimulation. Cell functional assays showed that HTMCs with H2O2 exposure duration had a more irregular actin architecture compared to normal TM cells. Data with rhTGF-ß1 (1 ng/mL) pretreatment reduced the cell apoptosis rate and amount of reactive oxygen species (ROS), while it also enhanced survival. Furthermore, TGF-ß1 and TGF-ß2 in terms of antioxidant signaling were related to the activation of collagen I and laminin, which are fibrosis-response proteins. Succinctly, our study demonstrated that low concentrations of TGF-ß1 (1 ng/mL) preserves HTMCs from free radical-mediated injury by p-p38 MAPK level and p-AKT signaling balance, presenting a signaling transduction mechanism of TGF-ß1 in HTMC oxidative stress-related therapies.

10.
J Pharm Biomed Anal ; 192: 113647, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33010501

In this study, we aimed to identify the cultivatable oral anaerobic bacterial distribution in oral cavity by MALDI-TOF Biotyper. The bacterial distribution of three groups, including subjects with/without periodontal disease, two clusters of age (60 years as the cutoff), and before/after treatment, were investigated in this study. There were 38 participants recruited in this study, involving 18 subjects with moderate to severe periodontal-infected patients and 20 healthy controls. Total number of 126 bacterial species were identified by MALDI-TOF MS. The relative abundance of Streptococcus gordonii and Streptococcus intermedius in periodontal patients is higher than healthy controls indicating potential biomarkers for periodontal disease. Participants with periodontal disease were subdivided in to two clusters of age (60 years as the cutoff), 11 and 7 participants were age <60 years and>60 years, respectively. Meanwhile, the incidence of Streptococcus pneumoniae and Streptococcus oralis infection were higher in the subjects above 60 years old than below. Moreover, the bacterial distribution between pre-treatment and post-treatment was similar indicating that basic treatment without the ability to redistribute the microbiota. In summary, the cultivable oral anaerobic bacteria were identified by MALDI-TOF MS and the bacterial distribution shifting was shown to be associated with the progress of periodontal disease to aging and basic treatment. This study provided information for diagnosis and treatment guidelines for oral healthcare.


Microbiota , Periodontal Diseases , Anaerobiosis , Healthy Volunteers , Humans , Middle Aged , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Int J Mol Sci ; 21(18)2020 Sep 04.
Article En | MEDLINE | ID: mdl-32899874

A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.


Oxidative Stress/physiology , Retinal Ganglion Cells/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antioxidants/pharmacology , Cell Line , Cell Proliferation/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/pharmacology , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Rats , Reactive Oxygen Species/metabolism , Retinal Ganglion Cells/physiology , Signal Transduction/drug effects , Transforming Growth Factor beta/physiology , Transforming Growth Factors/metabolism
12.
Chem Biol Interact ; 331: 109249, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32980322

Oxidative stress provides a major contribution to the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) damage. Transforming growth factor ß (TGF-ß) has appeared as a neuroprotective protein in various indignities. However, the TGF-ß mechanism of protective effects against oxidative stress damage in RGCs still undetermined. In our research, we investigated the regulatory mechanisms and potential effects of TGF-ß1 & TGF-ß2 in hydrogen peroxide (H2O2)-stimulated oxidative stress of RGCs in vitro. By a series of cell functional qualitative analysis, such as MTT cell viability assay, wound healing ability assay, apoptosis assay, intracellular ROS detection, immunoblot analysis, intracellular GSH content, and high-resolution respirometry, we illustrated the cell state in oxidative stress-induced injury. Results of protein expression showed that TGF-ß1 & TGF-ß2 was upregulated in RGCs after H2O2 stimulation. Cell functional assays resulted that knockdown of TGF-ß1 & TGF-ß2 reduced survival rate whereas enhanced apoptosis and accumulation of reactive oxygen species (ROS). Especially TGF-ß1 upregulation promoted the protein expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and increased the activity of antioxidant and neuroprotection pathways. Additionally, TGF-ß1 & TGF-ß2 on antioxidant signaling was related to activation of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2), which are stress-response proteins. ROS accumulation followed by the accumulation of hypoxia-inducible factor (HIF-1α) caused mitochondrial damage and led to neurodegeneration. In summary, our results demonstrated that TGF-ß1 preserves RGCs from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-ß1 in retinal neuroprotection-related therapies.


Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Acetylcysteine/pharmacology , Aldehyde Dehydrogenase/metabolism , Animals , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Oxygen Consumption/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
13.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Article En | MEDLINE | ID: mdl-32893977

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , G1 Phase Cell Cycle Checkpoints , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Polymerization , Proteomics , RNA, Small Interfering/metabolism , Wound Healing , Xenograft Model Antitumor Assays
14.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Article En | MEDLINE | ID: mdl-32672400

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Cell Proliferation/genetics , Membrane Proteins/genetics , Mouth Neoplasms/genetics , Neoplasm Proteins/genetics , Receptors, Progesterone/genetics , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Heterografts , Humans , Mice , Mouth Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Proteomics
15.
J Pharm Biomed Anal ; 187: 113142, 2020 Aug 05.
Article En | MEDLINE | ID: mdl-32460214

Antrodia Cinnamomea is a fungus species widely used as a herb medicine for hypertension, cancer and handover. Nevertheless, the biological roles of Antrodia Cinnamomea on the molecular mechanism of liver cancer are not entirely understood. To determine whether Antrodia Cinnamomea is able to be used for the treatment of liver cancer and its molecular mechanism, we examined the effect of Antrodia Cinnamomea on the differential proteomic patterns in liver cancer cell lines HepG2 and C3A as well as in Chang's liver cell, a normal liver cell, using quantitative proteomic approach. The proteomic analysis demonstrated that abundance of 82, 125 and 125 proteins was significantly altered in Chang's liver cells, C3A and HepG2, respectively. The experimental outcomes also demonstrated that Antrodia Cinnamomea-induced cytotoxicity in liver cancer cells mostly involved dysregulation of protein folding, cytoskeleton regulation, redox-regulation, glycolysis pathway as well as transcription regulation. Further analysis also revealed that Antrodia Cinnamomea promoted misfolding of intracellular proteins and dysregulate of cellular redox-balance resulting in ER-stress. To sum up our studies demonstrated that the proteomic strategy used in this study offered a tool to investigate the molecular mechanisms of Antrodia Cinnamomea-induced liver cancer cytotoxicity. The proteomic results might be further evaluated as prospective targets in liver cancer treatment.


Antineoplastic Agents/pharmacology , Liver Neoplasms/drug therapy , Polyporales/chemistry , Proteomics , Cell Line , Cell Line, Tumor , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Endoplasmic Reticulum Stress/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver Neoplasms/metabolism , Oxidation-Reduction/drug effects , Protein Folding/drug effects
16.
J Pharm Biomed Anal ; 186: 113300, 2020 Jul 15.
Article En | MEDLINE | ID: mdl-32413824

Cancer metastasis is the major cause of death in pancreatic cancer. We have established a pair of pancreatic ductal adenocarcinoma cell line, PANC1 and invasive PANC1-I5, as a model system toinvestigate the metastatic mechanism as well as potential therapeutic targets in pancreatic cancer. We used proteomic analysis based on two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to examine the global protein expression alterations between PANC1 and PANC1-I5. Proteomic study revealed that 88 proteins are differentially expressed between PANC1-I5 and PANC1 cells, and further functional evaluations through protein expression validation, gene knockout, migration and invasion analysis revealed that galectin-1 is one of the potential players in modulating pancreatic cancer metastasis. To conclude, we have identified numerous proteins might be associated with pancreatic cancer invasiveness in the pancreatic cancer model.


Carcinoma, Pancreatic Ductal/pathology , Galectin 1/metabolism , Pancreatic Neoplasms/pathology , Proteomics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
17.
Nutrients ; 12(3)2020 Mar 10.
Article En | MEDLINE | ID: mdl-32164196

Obesity is associated with metabolic disorders. Thus, obesity prevention and treatment are essential for health. Antrodia cinnamomea (AC) is a multifunctional medicinal fungus used for the treatment of various diseases and for preventing diet-induced obesity. Leptin deficiency causes over-eating and spontaneous obesity. The concomitant metabolic symptoms are more severe than diet-induced obesity. Here, we used leptin-deficient (ob/ob) mice as an animal model for over-feeding to study the effect of AC on obesity. We fed C57BL/6 mice (WT, ob+/+) and ob/ob mice with AC for four weeks before performing qRT-PCR and immunoblot analysis to elaborate AC-modulated mechanisms. Further, we used Caco-2 cells as a human intestinal epithelial barrier model to examine the effect of AC on intestinal permeability. Our results suggested that AC reduces lipid deposits of the liver and epididymal white adipose tissue (EWAT) by promoting lipid metabolism and inhibiting lipogenesis-associated genes and proteins in ob/ob mice. Moreover, AC effectively repaired intestinal-barrier injury caused by leptin deficiency and enhanced intestinal barrier integrity in Caco-2 cells. Interestingly, AC significantly reduced body weight and EWAT with no compromise on food intake in ob/ob mice. Thus, AC effectively reduced obesity caused by leptin-deficiency and can potentially be used as a nutraceutical for treating obesity.


Adipose Tissue, White , Antrodia/chemistry , Intestinal Mucosa , Leptin/deficiency , Obesity , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Caco-2 Cells , Disease Models, Animal , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Leptin/metabolism , Mice , Mice, Knockout , Mice, Obese , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Obesity/pathology
18.
Arch Biochem Biophys ; 682: 108278, 2020 03 30.
Article En | MEDLINE | ID: mdl-31981541

Oral microbes are a contributing factor to hyperglycemia by inducing an increase in insulin resistance resulting in uncontrolled blood glucose levels. However, the relationship between the distribution of oral flora and hyperglycemia is still controversial. Combining the power of MALDI-Biotyper with anaerobic bacterial culture, this study explores the correlation between anaerobic bacteria in the oral cavity and blood glucose levels. The results demonstrated that altered blood glucose levels contributed to a varied bacterial distribution in the oral cavity. Specifically, Veillonella spp. and Prevotella spp. were identified in a higher proportion in people with elevated blood glucose levels. Six bacterial species identified in this study (Prevotella melaninogenica, Campylobacter rectus, Streptococcus gordonii, Streptococcus mitis, Streptococcus salivarius, and Veillonella parvula) not only demonstrated a positive association with higher blood glucose levels, but also likely contribute to the development of the condition. The data demonstrated MALDI-TOF MS to be a simpler, faster, and more economical clinical identification tool that provides clarity and depth to the research on blood glucose and oral microbiota.


Gingiva/microbiology , Hyperglycemia/microbiology , Microbiota , Saliva/microbiology , Adult , Aged , Bacteria, Anaerobic , Blood Glucose/analysis , Campylobacter rectus , Female , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Prevotella/metabolism , Prevotella melaninogenica , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Streptococcus gordonii , Streptococcus mitis , Streptococcus salivarius , Veillonella/metabolism
19.
J Pharm Biomed Anal ; 160: 344-350, 2018 Oct 25.
Article En | MEDLINE | ID: mdl-30114613

Evodiamine is a natural product extracted from herbal plants such as Tetradium which has shown to have anti-fat uptake and anti-proliferation properties. However, the effects of evodiamine on the behavior of thyroid cancers are largely unknown. To determine if evodiamine might be useful in the treatment of thyroid cancer and its cytotoxic mechanism, we analyzed the impact of evodiamine treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated 77 protein features that were significantly changed in protein expression and revealed evodiamine-induced cytotoxicity in thyroid cancer cells involves dysregulation of protein folding, cytoskeleton, cytoskeleton regulation and transcription control. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of evodiamine-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Cell Survival/drug effects , Proteomics/methods , Quinazolines/pharmacology , Cell Line, Tumor , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis/methods
20.
Life Sci ; 207: 184-204, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29883720

AIMS: Honokiol is a natural product extracted from herbal plants such as the Magnolia species which have been shown to exhibit anti-tumor and anti-metastatic properties. However, the effects of honokiol on thyroid cancers are largely unknown. MATERIALS AND METHODS: To determine whether honokiol might be useful for the treatment of thyroid cancer and to elucidate the mechanism of toxicity of honokiol, we analyzed the impact of honokiol treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). KEY FINDINGS: This study revealed 178 proteins that showed a significant change in expression levels and also revealed that honokiol-induced cytotoxicity in thyroid cancer cells involves dysregulation of cytoskeleton, protein folding, transcription control and glycolysis. SIGNIFICANCE: Our work shows that combined proteomic strategy provides a rapid method to study the molecular mechanisms of honokiol-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Antineoplastic Agents, Phytogenic/pharmacology , Biphenyl Compounds/pharmacology , Lignans/pharmacology , Thyroid Neoplasms/pathology , Apoptosis , Cell Line, Tumor , Cell Survival , Cytoskeleton/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Magnolia/chemistry , Mass Spectrometry , Neoplasm Metastasis/drug therapy , Plant Extracts/pharmacology , Protein Processing, Post-Translational , Proteome , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thyroid Neoplasms/drug therapy
...