Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 124(19): 3720-3729, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32310650

RESUMEN

The key to effective separation of neptunium from the spent fuel reprocessing process is to adjust and control its valence state. Hydrazine and its derivatives have been experimentally confirmed to be effective salt-free reductants for reducing Np(VI) to Np(V). We theoretically studied the reduction reactions of Np(VI) with three hydrazine derivatives (2-hydroxyethyl hydrazine (HOC2H4N2H3), methyl hydrazine (CH3N2H3), and formyl hydrazide (CHON2H3)) and obtained the free radical ion mechanism and the free radical mechanism. Their potential energy profiles (PEPs) suggest that the free radical mechanism is the most probable reaction. Based on the energy barrier of the free radical ion mechanism, the trend of the reduction ability of the three hydrazine derivatives is HOC2H4N2H3 > CH3N2H3 > CHON2H3, which is in excellent agreement with the experimental results. Lastly, the analyses of natural bond orbitals (NBOs), quantum theory of atoms-in-molecules (QTAIM), and electron localization function (ELF) have been carried out to explore the bonding evolution of the structures along the reaction pathways. This work provides an insight into the reduction mechanism of Np(VI) with hydrazine derivatives from the theoretical perspective and helps to design more effective reductants for the separation of U/Np and Np/Pu in spent fuel reprocessing.

2.
Nanomaterials (Basel) ; 9(2)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759816

RESUMEN

The adsorption and separation of hazard metal ions, radioactive nuclides, or minor actinides from wastewater and high-level radioactive waste liquids using functional silica-based nano/micro-particles modified with various inorganic materials or organic groups, has attracted significant attention since the discovery of ordered mesoporous silica-based substrates. Focusing on inorganic and organic modified materials, the synthesis methods and sorption performances for specific ions in aqueous solutions are summarized in this review. Three modification methods for silica-based particles, the direct synthesis method, wetness impregnation method, and layer-by-layer (LBL) deposition, are usually adopted to load inorganic material onto silica-based particles, while the wetness impregnation method is currently used for the preparation of functional silica-based particles modified with organic groups. Generally, the specific synthesis method is employed based on the properties of the loading materials and the silicon-based substrate. Adsorption of specific toxic ions onto modified silica-based particles depends on the properties of the loaded material. The silicon matrix only changes the thermodynamic and mechanical properties of the material, such as the abrasive resistance, dispersibility, and radiation resistance. In this paper, inorganic loads, such as metal phosphates, molybdophosphate, titanate-based materials, and hydrotalcite, in addition to organic loads, such as 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-Calix{4}arene (Calix {4}) arene-R14 and functional 2,6-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines(BTP) are reviewed. More specifically, we emphasize on the synthesis methods of such materials, their structures in relation to their capacities, their selectivities for trapping specific ions from either single or multi-component aqueous solutions, and the possible retention mechanisms. Potential candidates for remediation uses are selected based on their sorption capacities and distribution coefficients for target cations and the pH window for an optimum cation capture.

3.
Sci Rep ; 7(1): 14679, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089628

RESUMEN

Directly separating minor actinides (MA: Am, Cm, etc.) from high level liquid waste (HLLW) containing lanthanides and other fission products is of great significance for the whole nuclear fuel cycle, especially in the aspects of reducing long-term radioactivity and simplifying the post-processing separation process. Herein, a novel silica-based adsorbent Me2-CA-BTP/SiO2-P was prepared by impregnating Me2-CA-BTP (2,6-bis(5,6,7,8-tetrahydro-5,8,9,9-tetramethyl-5,8-methano-1,2,4-benzotriazin-3-yl)pyridine) into porous silica/polymer support particles (SiO2-P) under reduced pressure. It was found Me2-CA-BTP/SiO2-P exhibited good adsorption selectivity towards 241Am(III) over 152Eu(III) in a wide nitric acid range, acceptable adsorption kinetic, adequate stability against γ irradiation in 1 and 3 M HNO3 solutions, and successfully separated 241Am(III) from simulated 3 M HNO3 HLLW. In sum, considering the good overall performance of Me2-CA-BTP/SiO2-P adsorbent, it has great application potential for directly separating MA from HLLW, and is expected to establish an advanced simplified MA separation process, which is very meaningful for the development of nuclear energy.

4.
J Phys Chem A ; 118(11): 2149-58, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24592814

RESUMEN

Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater.


Asunto(s)
Grafito/química , Óxidos/química , Teoría Cuántica , Uranio/química , Iones/química
5.
Inorg Chem ; 52(19): 10904-11, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24047245

RESUMEN

A series of extraction complexes of Eu(III) and Am(III) with CMPO (n-octyl(phenyl)-N,N-diisobutyl-methylcarbamoyl phosphine oxide) and its derivative Ph2CMPO (diphenyl-N,N-diisobutyl carbamoyl phosphine oxide) have been studied using density functional theory (DFT). It has been found that for the neutral complexes of 2:1 and 3:1 (ligand/metal) stoichiometry, CMPO and Ph2CMPO predominantly coordinate with metal cations through the phosphoric oxygen atoms. Eu(III) and Am(III) prefer to form the neutral 2:1 and 3:1 type complexes in nitrate-rich acid solutions, and in the extraction process the reactions of [M(NO3)(H2O)7](2+) + 2NO3(-) + nL → ML(n)(NO3)3 + 7H2O (M = Eu, Am; n = 2, 3) are the dominant complexation reactions. In addition, CMPO and Ph2CMPO show similar extractability properties. Taking into account the solvation effects, the metal-ligand binding energies are obviously decreased, i.e., the presence of solvent may have an significant effect on the extraction behavior of Eu(III) and Am(III) with CMPOs. Moreover, these CMPOs reagents have comparable extractability for Eu(III) and Am(III), confirming that these extractants have little lanthanide/actinide selectivity in acidic media.

6.
Inorg Chem ; 52(1): 196-203, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23231505

RESUMEN

The UO(2)(2+) and NpO(2)(+) extraction complexes with n-octyl(phenyl)-N,N-diisobutylmethylcarbamoyl phosphine oxide (CMPO) and diphenyl-N,N-diisobutylcarbamoyl phosphine oxide (Ph(2)CMPO) have been investigated by density functional theory (DFT) in conjunction with relativistic small-core pseudopotentials. For these extraction complexes, especially the complexes of 2:1 (ligand/metal) stoichiometry, UO(2)(2+) and NpO(2)(+) predominantly coordinate with the phosphoric oxygen atoms. The CMPO and Ph(2)CMPO ligands have higher selectivity for UO(2)(2+) over NpO(2)(+), and for all of the extraction complexes, the metal-ligand interactions are mainly ionic. In most cases, the complexes with CMPO and Ph(2)CMPO ligands have comparable metal-ligand binding energies, that is, the substitution of a phenyl ring for the n-octyl group at the phosphoryl group of CMPO has no obvious influence on the extraction of UO(2)(2+) and NpO(2)(+). Moreover, hydration energies might play an important role in the extractability of CMPO and Ph(2)CMPO for these actinyl ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA