Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(37): e202401172, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38682408

RESUMEN

The protection of lead halide perovskite within a stable matrix normally leads to the loss of semiconducting properties. Here, we report the synthesis of perovskite-ZIF glass interpenetrating networks via a cold pressing method, which allows the advantages of bright photoluminescence, high photoconductivity and environmental stability. This hybrid architecture has provided a novel design strategy for the real-world application of perovskite-based devices.

2.
Nat Commun ; 15(1): 2390, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493199

RESUMEN

Metal-halide perovskite thin monocrystals featuring efficient carrier collection and transport capabilities are well suited for radiation detectors, yet their growth in a generic, well-controlled manner remains challenging. Here, we reveal that mass transfer is one major limiting factor during solution growth of perovskite thin monocrystals. A general approach is developed to overcome synthetic limitation by using a high solute flux system, in which mass diffusion coefficient is improved from 1.7×10-10 to 5.4×10-10 m2 s-1 by suppressing monomer aggregation. The generality of this approach is validated by the synthesis of 29 types of perovskite thin monocrystals at 40-90 °C with the growth velocity up to 27.2 µm min-1. The as-grown perovskite monocrystals deliver a high X-ray sensitivity of 1.74×105 µC Gy-1 cm-2 without applied bias. The findings regarding limited mass transfer and high-flux crystallization are crucial towards advancing the preparation and application of perovskite thin monocrystals.

3.
Talanta ; 237: 122912, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736649

RESUMEN

Quinones are important components participating in various biological processes as well as hazardous substances to human health. Rapid determination of quinones in environmental samples and biofluids is the basis for assessing their health effect. Here, we presented a rapid, straightforward, highly sensitive and environmental-friendly wooden-tip electrospray ionization mass spectrometry (ESI-MS) method for the determination of quinones in PM2.5, urine and serum. An amine group "tag" was introduced to the quinone structure through in situ derivatization with cysteamine to improve ionization efficiency of quinones in wooden-tip ESI-MS. The toothpicks were treated by sharpening and acidification with HNO3. Experimental parameters, including sample volume, spray voltage, and spray solvent composition were optimized to be 1 µL, 3.5 kV, and ACN/CH3COOC2H5 (v/v, 9:1), respectively. The limits of detection for the determination of 1,4-benzoquinone, methyl-p-benzoquinone, 1,4-naphthoquinone and 1,4-anthraquinone in ACN under the optimal conditions were 1.00, 0.96, 0.13, 0.16 ng (1.00, 0.96, 0.13, 0.16 µg/mL, sample volume, 1 µL), respectively. This approach was successfully applied to the determination of 1,4-naphthoquinone and 1,4-anthraquinone in complex matrices, including PM2.5, urine and serum without or with minimal sample preparation (LOD range: 0.22-1.48 ng).


Asunto(s)
Quinonas , Espectrometría de Masa por Ionización de Electrospray , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...