Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(30): e2301131, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660290

RESUMEN

Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.


Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Piel , Titanio , Neovascularización Patológica , Propiedades de Superficie
2.
Patterns (N Y) ; 4(8): 100819, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602219

RESUMEN

Artificial intelligence (AI) is proliferating and developing faster than any domain scientist can adapt. To support the scientific enterprise in the Helmholtz association, a network of AI specialists has been set up to disseminate AI expertise as an infrastructure among domain scientists. As this effort exposes an evolutionary step in science organization in Germany, this article aspires to describe our setup, goals, and motivations. We comment on past experiences, current developments, and future ideas as we bring our expertise as an infrastructure closer to scientists across our organization. We hope that this offers a brief yet insightful view of our activities as well as inspiration for other science organizations.

3.
Bioengineering (Basel) ; 9(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447709

RESUMEN

Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds.

4.
Materials (Basel) ; 15(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454448

RESUMEN

The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiOx particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiOx fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiOx fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, 13C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs).

5.
Adv Mater ; 34(10): e2106780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933407

RESUMEN

The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Tejido Conectivo , Matriz Extracelular/química , Piel , Andamios del Tejido/química
6.
Materials (Basel) ; 14(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809094

RESUMEN

The foreign body reaction to neuronal electrode implants limits potential applications as well as the therapeutic period. Developments in the basic electrode design might improve the tissue compatibility and thereby reduce the foreign body reaction. In this work, the approach of embedding 3D carbon nanofiber electrodes in extracellular matrix (ECM) synthesized by human fibroblasts for a compatible connection to neuronal cells was investigated. Porous electrode material was manufactured by solution coelectrospinning of polyacrylonitrile and polyamide as a fibrous porogen. Moreover, NaCl represented an additional particulate porogen. To achieve the required conductivity for an electrical interface, meshes were carbonized. Through the application of two different porogens, the electrodes' flexibility and porosity was improved. Human dermal fibroblasts were cultured on the electrode surface for ECM generation and removed afterwards. Scanning electron microscopy imaging revealed a nano fibrous ECM network covering the carbon fibers. The collagen amount of the ECM coating was quantified by hydroxyproline-assays. The modification with the natural protein coating on the electrode functionality resulted in a minor increase of the electrical capacity, which slightly improved the already outstanding electrical interface properties. Increased cell numbers of SH-SY5Y cell line on ECM-modified electrodes demonstrated an improved cell adhesion. During cell differentiation, the natural ECM enhanced the formation of neurites regarding length and branching. The conducted experiments indicated the prevention of direct cell-electrode contacts by the modification, which might help to shield temporary the electrode from immunological cells to reduce the foreign body reaction and improve the electrodes' tissue integration.

7.
J Biomed Mater Res A ; 109(9): 1560-1574, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33675166

RESUMEN

Various types of synthetic polyesters have been developed as biomaterials for tissue engineering. These materials commonly possess biodegradability, biocompatibility, and formability, which are preferable properties for bone regeneration. The major challenge of using synthetic polyesters is the result of low cell affinity due to their hydrophobic nature, which hinders efficient cell seeding and active cell dynamics. To improve wettability, plasma treatment is widely used in industry. Here, we performed surface activation with oxygen plasma to hydrophobic copolymers, poly(l-lactide-co-trimethylene carbonate), which were shaped in 2D films and 3D microporous scaffolds, and then we evaluated the resulting surface properties and the cellular responses of rat bone marrow stem cells (rBMSC) to the material. Using scanning electron microscopy and Fourier-transform infrared spectroscopy, we demonstrated that short-term plasma treatment increased nanotopographical surface roughness and wettability with minimal change in surface chemistry. On treated surfaces, initial cell adhesion and elongation were significantly promoted, and seeding efficiency was improved. In an osteoinductive environment, rBMSC on plasma-treated scaffolds exhibited accelerated osteogenic differentiation with osteogenic markers including RUNX2, osterix, bone sialoprotein, and osteocalcin upregulated, and a greater amount of collagen matrix and mineral deposition were found. This study shows the utility of plasma surface activation for polymeric scaffolds in bone tissue engineering.


Asunto(s)
Matriz Extracelular/metabolismo , Osteogénesis , Oxígeno/farmacología , Gases em Plasma/farmacología , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Calcificación Fisiológica/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Colágeno/metabolismo , Dioxanos/farmacología , Matriz Extracelular/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas/química , Nanopartículas/ultraestructura , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Porosidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas Lew , Propiedades de Superficie
8.
Materials (Basel) ; 13(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143448

RESUMEN

Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified. By using two different levels of nanostructures and smooth samples as controls, the influence of tubular TiO2 and fractal TiN nanostructures on primary human macrophages with M1 or M2-phenotype was investigated. Therefore, nanotopographical coatings were either, directly generated by physical vapor deposition (PVD) or by electrochemical anodization of titanium PVD coatings. The cellular response of macrophages was quantitatively assessed to demonstrate a difference in biocompatibility of nanotubes in respect to human M1 and M2-macrophages. Depending on the tube diameter of the nanotubular surfaces, low cell numbers and impaired cellular activity, was detected for M2-macrophages, whereas the impact of nanotubes on M1-polarized macrophages was negligible. Importantly, we could confirm this phenotypic response on the fractal TiN surfaces. The results indicate that the investigated topographies specifically impact the macrophage M2-subtype that modulates the formation of the fibrotic capsule and the long-term response to an implant.

9.
Acta Biomater ; 89: 227-241, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30880238

RESUMEN

The therapeutic efficacy of a medical product after implantation depends strongly on the host-initiated fibrotic response (foreign body reaction). For novel biomaterials, it is of high relevance to understand this fibrotic process. As an alternative to in vivo studies, in vitro models mimic parts of the whole foreign body reaction. Aim of this study was to develop a wound model with key cells and matrix proteins in coculture. This approach combined blood components such as primary macrophages in a plasma-derived fibrin hydrogel, directly exposed to reference biomaterials (PTFE, glass, titanium). The soft tissue reaction is resembled by integrating fibroblasts in a collagen or a fibrin matrix. Those two experimental setups were conducted to show whether a long-term in vitro culture of 13 days is feasible. The response to reference biomaterials was assessed by multi-parametric analyses, comprising molecular profiling (cytokines, collagen I and ß-actin) and tissue remodeling (cell adherence, histological structure, tissue deposition). Polytetrafluorethylene (PTFE) and titanium were tested as references to correlate the in vitro evaluation to previous in vivo studies. Most striking, both model setups evaluated references' fibrotic characteristics as previously reported by in vivo studies. STATEMENT OF SIGNIFICANCE: We present a test platform applied for assessments on the foreign body reaction to biomaterials. This test system consists of blood components - macrophages and plasma-derived fibrin - as well as fibroblasts and collagen, generating a three-dimensional wound microenvironment. By this modular approach, we achieved a suitable test for long-term studies and overcame the limited short-term stability of whole blood tests. In contrast to previous models, macrophages' viability is maintained during the extended culture period and excels the quality of the model. The potential to evaluate a foreign body reaction in vitro was demonstrated with defined reference materials. This model system might be of high potential as a screening platform to identify novel biomaterial candidates.


Asunto(s)
Materiales Biocompatibles/farmacología , Fibroblastos/metabolismo , Reacción a Cuerpo Extraño/metabolismo , Hidrogeles , Macrófagos/metabolismo , Modelos Biológicos , Materiales Biocompatibles/efectos adversos , Adhesión Celular/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo , Fibroblastos/patología , Reacción a Cuerpo Extraño/patología , Humanos , Hidrogeles/efectos adversos , Hidrogeles/farmacología , Macrófagos/patología
10.
Sci Rep ; 8(1): 14545, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266922

RESUMEN

Pacemaker systems are an essential tool for the treatment of cardiovascular diseases. However, the immune system's natural response to a foreign body results in the encapsulation of a pacemaker electrode and an impaired energy efficiency by increasing the excitation threshold. The integration of the electrode into the tissue is affected by implant properties such as size, mechanical flexibility, shape, and dimensionality. Three-dimensional, tissue-like electrode scaffolds render an alternative to currently used planar metal electrodes. Based on a modified electrospinning process and a high temperature treatment, a conductive, porous fiber scaffold was fabricated. The electrical and immunological properties of this 3D electrode were compared to 2D TiN electrodes. An increased surface of the fiber electrode compared to the planar 2D electrode, showed an enhanced electrical performance. Moreover, the migration of cells into the 3D construct was observed and a lower inflammatory response was induced. After early and late in vivo host response evaluation subcutaneously, the 3D fiber scaffold showed no adverse foreign body response. By embedding the 3D fiber scaffold in human cardiomyocytes, a tissue-electrode hybrid was generated that facilitates a high regenerative capacity and a low risk of fibrosis. This hybrid was implanted onto a spontaneously beating, tissue-engineered human cardiac patch to investigate if a seamless electronic-tissue interface is generated. The fusion of this hybrid electrode with a cardiac patch resulted in a mechanical stable and electrical excitable unit. Thereby, the feasibility of a seamless tissue-electrode interface was proven.


Asunto(s)
Miocitos Cardíacos/citología , Marcapaso Artificial , Andamios del Tejido/química , Animales , Células Cultivadas , Conductividad Eléctrica , Femenino , Reacción a Cuerpo Extraño/etiología , Humanos , Miocardio/citología , Marcapaso Artificial/efectos adversos , Porosidad , Ratas Wistar , Ingeniería de Tejidos/métodos , Andamios del Tejido/efectos adversos
11.
Sci Rep ; 7(1): 1689, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490729

RESUMEN

Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch's 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests. The aim of the study was to identify a test setting, which is predictive and might be time- and cost-efficient. We demonstrated how sensitive in vitro biomaterial assessment based on human primary macrophages depends on test conditions. Moreover, possible clinical scenarios such as lipopolysaccharide contamination, contact to autologous blood plasma, and presence of IL-4 in an immune niche influence the outcome of a biomaterial ranking. Nevertheless, by using glass, titanium, polytetrafluorethylene, silicone, and polyethylene representing a specific material-induced fibrotic response and by comparison to literature data, we were able to identify a test condition that provides a high correlation to state-of-the-art in vivo studies. Most important, biomaterial ranking obtained under native plasma test conditions showed a high predictive accuracy compared to in vivo assessments, strengthening a biomimetic three-dimensional in vitro test platform.


Asunto(s)
Materiales Biocompatibles/efectos adversos , Modelos Biológicos , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Fibrosis , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Fenotipo , Gases em Plasma/farmacología
12.
ALTEX ; 34(2): 253-266, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27725990

RESUMEN

Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned in vitro test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages. Embedded in a biomimetic three-dimensional collagen hydrogel, chemotaxis of fibroblasts in the direction of macrophage-material-conditioned cell culture supernatant was analyzed by live cell imaging. A combination of statistical analysis with a complementary parameterized random walk model allowed quantitative and qualitative characterization of the cellular walk process. We thereby identified an increasing macrophage-mediated chemotactic potential ranking of biomaterials from glass over polytetrafluorethylene to titanium. To address long-term effects of bio-material-resident macrophages on fibroblasts in a three-dimensional microenvironment, we further studied tissue remodeling by applying macrophage-material-conditioned medium on fibrous in vitro tissue models. A high correlation of the in vitro tissue model to state of the art in vivo study data was found. Titanium exhibited a significantly lower tissue remodeling capacity compared to polytetrafluorethylene. With this approach, we identified a material dependency of both chemotaxis and tissue remodeling processes, strengthening knowledge on their specific contribution to the foreign body reaction.


Asunto(s)
Quimiotaxis/fisiología , Reacción a Cuerpo Extraño/inmunología , Técnicas In Vitro , Alternativas a las Pruebas en Animales , Animales , Materiales Biocompatibles , Fibroblastos/citología , Fibroblastos/inmunología , Humanos , Macrófagos/citología , Macrófagos/inmunología , Modelos Estadísticos
13.
Adv Healthc Mater ; 5(17): 2191-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27185494

RESUMEN

Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage.


Asunto(s)
Materiales Biomiméticos/química , Cartílago/metabolismo , Diferenciación Celular , Movimiento Celular , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química , Cartílago/citología , Humanos , Células Madre Mesenquimatosas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...