Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
J Leukoc Biol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38701199

Intestinal eosinophils express the aryl hydrocarbon receptor (AHR), an environmental sensor and ligand-activated transcription factor that responds to dietary or environmental ligands. AHR regulates tissue adaptation, survival, adhesion, and immune functions in intestinal eosinophils. The AHR repressor (AHRR) is itself induced by AHR and believed to limit AHR activity in a negative feedback loop. We analysed gene expression in intestinal eosinophils from WT and AHRR-KO mice and found that AHRR did not suppress most AHR-dependent genes. Instead, AHRR limited the expression of a distinct small set of genes involved in the innate immune response. These included S100 proteins, antimicrobial proteins and alpha-defensins. Using bone marrow-derived eosinophils we found that AHRR-KO eosinophils released more reactive oxygen species upon stimulation. This work shows that the paradigm of AHRR as a repressor of AHR transcriptional activity does not apply to intestinal eosinophils. Rather, AHRR limits the expression of innate immune response and antimicrobial genes, possibly to maintain an anti-inflammatory phenotype in eosinophils when exposed to microbial signals in the intestinal environment.

2.
Osteoarthritis Cartilage ; 31(10): 1327-1341, 2023 10.
Article En | MEDLINE | ID: mdl-37225052

OBJECTIVES: We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN: The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS: We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS: The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.


Granulocyte-Macrophage Colony-Stimulating Factor , Osteoarthritis, Knee , Humans , Male , Animals , Mice , Cytokines , Pain , Osteoarthritis, Knee/etiology , Synovial Membrane/metabolism , Chemokine CCL17
3.
Front Immunol ; 13: 856230, 2022.
Article En | MEDLINE | ID: mdl-35464417

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Mycotoxins , Toll-Like Receptor 4 , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cytokines/metabolism , Dendritic Cells , Depsipeptides , HEK293 Cells , Humans , Interleukin-12/metabolism , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
4.
J Invest Dermatol ; 142(4): 1183-1193, 2022 04.
Article En | MEDLINE | ID: mdl-34571000

The transcription factor HIF-1a regulates cellular metabolism under hypoxia but also immune responses and UVB-induced skin reactions. In keratinocytes (KCs), HIF-1a is an environmental sensor orchestrating the adaptation to environmental changes. In this study, we investigated the role of HIF-1a in KCs for skin reactions to acute and chronic UVB exposure in mice. The function of HIF-1a in KCs under UVB exposure was analyzed in KC-specific HIF-1a conditional knockout (cKO) mice. cKO mice were hypersensitive to acute high-dose UVB irradiation compared with wild-type mice, displaying increased cell death and delayed barrier repair. After chronic low-dose UVB treatment, cKO mice also had stronger epidermal damage but reduced infiltration of dermal macrophages and T helper cells compared with wild-type mice. Irradiated cKO mice revealed accumulation of regulatory lymphocytes in dorsal skin-draining lymph nodes compared with wild-type and unirradiated mice. This was reflected by an augmented IL-10 release of lymph node cells and a weaker contact hypersensitivity reaction to DNFB in UVB-exposed cKO mice than in wild-type and unirradiated controls. In summary, we found that KC-specific HIF-1a expression is crucial for adaptation to UVB exposure and inhibits the development of UVB-induced immunosuppression in mice. Therefore, HIF-1a signaling in KCs could ameliorate photoaging-related skin disorders.


Keratinocytes , Ultraviolet Rays , Animals , Immune Tolerance , Immunosuppression Therapy , Keratinocytes/metabolism , Mice , Skin , Ultraviolet Rays/adverse effects
5.
Immun Inflamm Dis ; 9(3): 891-904, 2021 09.
Article En | MEDLINE | ID: mdl-33945673

INTRODUCTION: Salmonella spp. are a recognized and global cause of serious health issues from gastroenteritis to invasive disease. The mouse model of human typhoid fever, which uses Salmonella enterica serovar Typhimurium (STM) in susceptible mouse strains, has revealed that the bacteria gain access to extraintestinal tissues from the gastrointestinal tract to cause severe systemic disease. Previous analysis of the immune responses against Salmonella spp. revealed the crucial role played by dendritic cells (DCs) in carrying STM from the intestinal mucosa to the mesenteric lymph nodes (mLNs), a key site for antigen presentation and T cell activation. In this study, we investigated the influence of chemokine CCL17 on the dissemination of STM. METHODS: WT, CCL17/EGFP reporter, or CCL17-deficient mice were infected orally with STM (SL1344) or mCherry-expressing STM for 1-3 days. Colocalization of STM with CCL17-expressing DCs in Peyer's patches (PP) and mLN was analyzed by fluorescence microscopy. In addition, DCs and myeloid cell populations from naïve and Salmonella-infected mice were analyzed by flow cytometry. Bacterial load was determined in PP, mLN, spleen, and liver 1 and 3 days after infection. RESULTS: Histological analysis revealed that CCL17-expressing cells are located in close proximity to STM in the dome area of PP. We show that, in mLN, STM were preferentially located within CCL17+ rather than CCL17- DCs, besides other mononuclear phagocytes, and identified the CD103+ CD11b- DC subset as the main STM-carrying DC population in the intestine. STM infection triggered upregulation of CCL17 expression in specific intestinal DC subsets in a tissue-specific manner. The dissemination of STM from the gut to the mLN, however, was only moderately influenced by the presence of CCL17. CONCLUSION: CCL17-expressing DCs were preferentially infected by Salmonella in the intestine in comparison to other DC. Nevertheless, the production of CCL17 was not essential for the early dissemination of Salmonella from the gut to systemic organs.


Chemokine CCL17 , Dendritic Cells , Animals , Intestinal Mucosa , Mice , Salmonella typhimurium , Spleen
6.
Exp Dermatol ; 30(11): 1699-1704, 2021 11.
Article En | MEDLINE | ID: mdl-33751678

Herpes simplex virus type 1 (HSV-1) can induce in certain individuals with atopic dermatitis (AD) severe cutaneous infections that can spread throughout the entire body, a condition named as AD complicated by eczema herpeticum (ADEH). It has been recently found that ADEH patients can produce specific IgE against HSV-1 proteins, which may contribute to lower protection against HSV-1. However, little is known about the capacity of these HSV-1 proteins to produce an inflammatory response at the skin level. In this study, using a mouse model of AD-like dermatitis, three HSV-1 proteins (glycoprotein D -gD-, glycoprotein B -gB- and VP22) were applied on tape-stripped back skin mice in three exposures periods. Ovalbumin (OVA) and 0.9% NaCl were used as positive and negative controls, respectively. Skin samples were obtained for analysis of specific cell components of skin infiltration. The results showed that the viral protein gD induced a statistically significant increase in the number of dermal infiltrating CD3+, CD4+ cells and mast cells compared with the negative control group. gD was also able to induce epidermal thickening and epidermal infiltration of T cells closely related to the one produced in mice sensitized with OVA. However, VP22 and gB contributed to a lesser extent to skin inflammation. These results showed that proteins from HSV-1, especially gD, can have per se an important T cell and mast cell-driven inflammatory potential at the skin level.


Dermatitis, Atopic/virology , Dermatitis/virology , Herpesvirus 1, Human , Viral Proteins , Animals , Disease Models, Animal , Mice
7.
Sci Rep ; 10(1): 21104, 2020 12 03.
Article En | MEDLINE | ID: mdl-33273595

Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.


Adipose Tissue/cytology , Organoids/cytology , Organoids/immunology , Animals , Diet , Imaging, Three-Dimensional , Insulin/pharmacology , Interleukin-4/pharmacology , Lipid Metabolism/drug effects , Lipidomics , Lipopolysaccharides/pharmacology , Male , Mass Spectrometry , Mice, Inbred C57BL , Organoids/drug effects , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Stromal Cells/cytology , Stromal Cells/drug effects
8.
Cells ; 9(10)2020 10 08.
Article En | MEDLINE | ID: mdl-33050035

A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.


Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Animals , Click Chemistry/methods , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/physiology , Fatty Liver/etiology , Fatty Liver/metabolism , Hepatocytes/physiology , Inflammation/metabolism , Kupffer Cells/physiology , Lipid Metabolism/physiology , Lipids/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha
9.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32366032

A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.


Gastrointestinal Microbiome/drug effects , Indoles/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/toxicity , Female , Flow Cytometry , Indoles/therapeutic use , Male , Mice , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/genetics
10.
Int J Mol Sci ; 21(6)2020 Mar 24.
Article En | MEDLINE | ID: mdl-32213963

Background Aryl hydrocarbon receptor (AHR)-deficient mice do not support the expansion of dendritic epidermal T cells (DETC), a resident immune cell population in the murine epidermis, which immigrates from the fetal thymus to the skin around birth. Material and Methods In order to identify the gene expression changes underlying the DETC disappearance in AHR-deficient mice, we analyzed microarray RNA-profiles of DETC, sorted from the skin of two-week-old AHR-deficient mice and their heterozygous littermates. In vitro studies were done for verification, and IL-10, AHR repressor (AHRR), and c-Kit deficient mice analyzed for DETC frequency. Results We identified 434 annotated differentially expressed genes. Gene set enrichment analysis demonstrated that the expression of genes related to proliferation, ion homeostasis and morphology differed between the two mouse genotypes. Importantly, with 1767 pathways the cluster-group "inflammation" contained the majority of AHR-dependently regulated pathways. The most abundant cluster of differentially expressed genes was "inflammation." DETC of AHR-deficient mice were inflammatory active and had altered calcium and F-actin levels. Extending the study to the AHRR, an enigmatic modulator of AHR-activity, we found approximately 50% less DETC in AHRR-deficient mice than in wild-type-littermates. Conclusion AHR-signaling in DETC dampens their inflammatory default potential and supports their homeostasis in the skin.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Dendritic Cells/metabolism , Interleukin-10/metabolism , Repressor Proteins/metabolism , Skin/metabolism , T-Lymphocytes/metabolism , Transcriptome , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Female , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Mutation , Repressor Proteins/genetics , Signal Transduction , Skin/cytology
12.
Int J Mol Sci ; 20(18)2019 Sep 07.
Article En | MEDLINE | ID: mdl-31500303

Viral infections are associated with increased incidence of severe sepsis. Particularly during the early stages, type I interferons (IFNs) are known mediators of detrimental effects. However, the functional role of early interferon ß (IFNß) and its cellular source during sepsis in the context of preexisting viral infections has not been defined. Using the colon ascendens stent peritonitis (CASP) model, we demonstrate that IFNß-/- and type I IFN receptor (IFNAR1)-/- mice were less susceptible to sepsis after pre-stimulation with the viral mimetic poly(I:C). Wild type (WT) mice treated with poly(I:C) exhibited altered expression patterns of TNF and IL-12p40 during CASP which were dependent on IFNß or IFNAR1, suggesting a mechanism for the increased sepsis susceptibility of WT mice. Using a double cytokine reporter mouse model, we present novel data on the simultaneous expression of IFNß and IL-12p40 on a single cell level during polymicrobial sepsis in vivo. Conventional dendritic cells (cDCs) were identified as primary source of IFNß and the protective cytokine IL-12p40 after CASP surgery irrespective of poly(I:C) pre-stimulation. These data demonstrated that if polymicrobial sepsis is preceded by a viral infection, IFNß and IL-12p40 are expressed by polyfunctional cDCs suggesting that these cells can play both detrimental and beneficial roles during sepsis development.


Coinfection/immunology , Dendritic Cells/immunology , Interferon-beta/genetics , Poly I-C/administration & dosage , Receptor, Interferon alpha-beta/genetics , Sepsis/immunology , Animals , Coinfection/blood , Coinfection/virology , Disease Models, Animal , Female , Gene Knockout Techniques , Interferon-beta/metabolism , Interleukin-12 Subunit p40/metabolism , Mice , Mice, Inbred C57BL , Poly I-C/immunology , Receptor, Interferon alpha-beta/metabolism , Sepsis/virology , Signal Transduction
13.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Article En | MEDLINE | ID: mdl-31027998

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Dinoprostone/analogs & derivatives , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Intra-Abdominal Fat/immunology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , 3T3 Cells , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Insulin Resistance/genetics , Intra-Abdominal Fat/cytology , Jurkat Cells , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism
14.
Parasitol Res ; 118(2): 539-549, 2019 Feb.
Article En | MEDLINE | ID: mdl-30643971

Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.


Adaptor Proteins, Vesicular Transport/metabolism , Filariasis/immunology , Filariasis/parasitology , Filarioidea/growth & development , Filarioidea/immunology , Signal Transduction , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cytokines/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology
15.
Glia ; 66(10): 2246-2261, 2018 10.
Article En | MEDLINE | ID: mdl-30277599

Chemokines are important signaling molecules in the immune and nervous system. Using a fluorescence reporter mouse model, we demonstrate that the chemokine CCL17, a ligand of the chemokine receptor CCR4, is produced in the murine brain, particularly in a subset of hippocampal CA1 neurons. We found that basal expression of Ccl17 in hippocampal neurons was strongly enhanced by peripheral challenge with lipopolysaccharide (LPS). LPS-mediated induction of Ccl17 in the hippocampus was dependent on local tumor necrosis factor (TNF) signaling, whereas upregulation of Ccl22 required granulocyte-macrophage colony-stimulating factor (GM-CSF). CCL17 deficiency resulted in a diminished microglia density under homeostatic and inflammatory conditions. Further, microglia from naïve Ccl17-deficient mice possessed a reduced cellular volume and a more polarized process tree as assessed by computer-assisted imaging analysis. Regarding the overall branching, cell surface area, and total tree length, the morphology of microglia from naïve Ccl17-deficient mice resembled that of microglia from wild-type mice after LPS stimulation. In line, electrophysiological recordings indicated that CCL17 downmodulates basal synaptic transmission at CA3-CA1 Schaffer collaterals in acute slices from naïve but not LPS-treated animals. Taken together, our data identify CCL17 as a homeostatic and inducible neuromodulatory chemokine affecting the presence and morphology of microglia and synaptic transmission in the hippocampus.


Chemokine CCL17/metabolism , Hippocampus/immunology , Neuroimmunomodulation/physiology , Neurons/immunology , Animals , Chemokine CCL17/genetics , Chemokine CCL22/metabolism , Female , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/pathology , Homeostasis/physiology , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/immunology , Microglia/pathology , Monocytes/immunology , Monocytes/pathology , Neurons/pathology , Receptors, CCR4/metabolism , Synaptic Transmission/physiology , Tumor Necrosis Factor-alpha/metabolism
16.
Mol Ther ; 26(1): 95-104, 2018 01 03.
Article En | MEDLINE | ID: mdl-29103909

The chemokine CCL17, mainly produced by dendritic cells (DCs) in the immune system, is involved in the pathogenesis of various inflammatory diseases. As a ligand of CCR4, CCL17 induces chemotaxis and facilitates T cell-DC interactions. We report the identification of two novel RNA aptamers, which were validated in vitro and in vivo for their capability to neutralize CCL17. Both aptamers efficiently inhibited the directed migration of the CCR4+ lymphoma line BW5147.3 toward CCL17 in a dose-dependent manner. To study the effect of these aptamers in vivo, we used a murine model of contact hypersensitivity. Systemic application of the aptamers significantly prevented ear swelling and T cell infiltration into the ears of sensitized mice after challenge with the contact sensitizer. The results of this proof-of-principle study establish aptamers as potent inhibitors of CCL17-mediated chemotaxis. Potentially, CCL17-specific aptamers may be used therapeutically in humans to treat or prevent allergic and inflammatory diseases.


Aptamers, Nucleotide/genetics , Chemokine CCL17/genetics , Chemotaxis/genetics , Chemotaxis/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Aptamers, Nucleotide/chemistry , Cell Movement/genetics , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Macrophages/immunology , Macrophages/metabolism , Mice , Nucleic Acid Conformation , SELEX Aptamer Technique
18.
J Med Chem ; 60(9): 3636-3655, 2017 05 11.
Article En | MEDLINE | ID: mdl-28406627

The Gi protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and ß-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC50 41.3 nM). In ß-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.


Indoles/pharmacology , Receptors, Cell Surface/agonists , Allosteric Regulation , Animals , CHO Cells , Calcium/metabolism , Chromatography, Liquid , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Hep G2 Cells , Humans , Indoles/chemistry , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled , Spectrum Analysis/methods , beta-Arrestins/metabolism
19.
J Invest Dermatol ; 136(11): 2260-2269, 2016 11.
Article En | MEDLINE | ID: mdl-27430407

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in adaptive cell functions, and it is highly active in the epidermis. AhR ligands can accelerate keratinocyte differentiation, but the precise role of AhR in the skin barrier is unknown. Our study showed that transepidermal water loss, a parameter of skin barrier integrity, is high in AhR-deficient mice. Experiments with conditionally AhR-deficient mouse lines identified keratinocytes as the primary cell population responsible for high transepidermal water loss. Electron microscopy showed weaker intercellular connectivity in the epidermis of keratinocytes in AhR-knockout mice, and gene expression analysis identified many barrier-associated genes as AhR targets. Moreover, AhR-deficient mice had higher interindividual differences in their microbiome. Interestingly, removing AhR ligands from the diet of wild-type mice mimicked AhR deficiency with respect to the impaired barrier; conversely, re-addition of the plant-derived ligand indole-3-carbinol rescued the barrier deficiency even in aged mice. Our results suggest that functional AhR expression is critical for skin barrier integrity and that AhR represents a molecular target for the development of therapeutic approaches for skin barrier diseases, including by dietary intervention.


Basic Helix-Loop-Helix Transcription Factors/genetics , DNA/genetics , Gene Expression Regulation , Keratinocytes/metabolism , Receptors, Aryl Hydrocarbon/genetics , Skin Diseases/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Keratinocytes/ultrastructure , Mice , Mice, Inbred C57BL , Microscopy, Electron , Receptors, Aryl Hydrocarbon/biosynthesis , Skin Diseases/metabolism , Skin Diseases/pathology
20.
Sci Rep ; 6: 26091, 2016 05 17.
Article En | MEDLINE | ID: mdl-27184933

As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1ß production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli.


Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Enteritis/pathology , Gene Expression Regulation , Receptors, Aryl Hydrocarbon/biosynthesis , Repressor Proteins/metabolism , Animal Structures/enzymology , Animal Structures/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/genetics
...