Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Nucleic Acid Ther ; 33(3): 193-208, 2023 06.
Article En | MEDLINE | ID: mdl-37036788

In the last two decades, antisense oligonucleotides (AONs) that induce corrective exon skipping have matured as promising therapies aimed at tackling the dystrophin deficiency that underlies the severe and progressive muscle fiber degeneration in Duchenne muscular dystrophy (DMD) patients. Pioneering first generation exon 51 skipping AONs like drisapersen and eteplirsen have more recently been followed up by AONs for exons 53 and 45, with, to date, a total of four exon skipping AON drugs having reached (conditional) regulatory US Food and Drug Administration (FDA) approval for DMD. Nonetheless, considering the limited efficacy of these drugs, there is room for improvement. The aim of this study was to develop more efficient [2'-O-methyl-modified phosphorothioate (2'OMePS) RNA] AONs for DMD exon 51 skipping by implementing precision chemistry as well as identifying a more potent target binding site. More than a hundred AONs were screened in muscle cell cultures, followed by a selective comparison in the hDMD and hDMDdel52/mdx mouse models. Incorporation of 5-methylcytosine and position-specific locked nucleic acids in AONs targeting the drisapersen/eteplirsen binding site resulted in 15-fold higher exon 51 skipping levels compared to drisapersen in hDMDdel52/mdx mice. However, with similarly modified AONs targeting an alternative site in exon 51, 65-fold higher skipping levels were obtained, restoring dystrophin up to 30% of healthy control. Targeting both sites in exon 51 with a single AON further increased exon skipping (100-fold over drisapersen) and dystrophin (up to 40%) levels. These dystrophin levels allowed for normalization of creatine kinase (CK) and lactate dehydrogenase (LDH) levels, and improved motor function in hDMDdel52/mdx mice. As no major safety observation was obtained, the improved therapeutic index of these next generation AONs is encouraging for further (pre)clinical development.


Muscular Dystrophy, Duchenne , Mice , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Mice, Inbred mdx , Genetic Therapy/methods , Exons/genetics
2.
PLoS One ; 15(12): e0244215, 2020.
Article En | MEDLINE | ID: mdl-33362201

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests. To address this, we previously generated the hDMDdel52/mdx mouse model using transcription activator like effector nuclease (TALEN) technology. This model contains mutated murine and human DMD genes, and therefore lacks mouse and human dystrophin resulting in a dystrophic phenotype. It allows preclinical evaluation of AONs inducing the skipping of human DMD exons 51 and 53 and resulting in restoration of dystrophin synthesis. Here, we have further characterized this model genetically and functionally. We discovered that the hDMD and hDMDdel52 transgene is present twice per locus, in a tail-to-tail-orientation. Long-read sequencing revealed a partial deletion of exon 52 (first 25 bp), and a 2.3 kb inversion in intron 51 in both copies. These new findings on the genomic make-up of the hDMD and hDMDdel52 transgene do not affect exon 51 and/or 53 skipping, but do underline the need for extensive genetic analysis of mice generated with genome editing techniques to elucidate additional genetic changes that might have occurred. The hDMDdel52/mdx mice were also evaluated functionally using kinematic gait analysis. This revealed a clear and highly significant difference in overall gait between hDMDdel52/mdx mice and C57BL6/J controls. The motor deficit detected in the model confirms its suitability for preclinical testing of exon skipping AONs for human DMD at both the functional and molecular level.


Disease Models, Animal , Dystrophin/genetics , Gene Deletion , Muscular Dystrophy, Duchenne/genetics , Phenotype , Transgenes , Animals , Biomechanical Phenomena , Dystrophin/metabolism , Exons , Gait , Humans , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology
3.
Nucleic Acid Ther ; 30(1): 50-65, 2020 02.
Article En | MEDLINE | ID: mdl-31821107

Duchenne muscular dystrophy (DMD) is a severe childhood muscle disease primarily caused by the lack of functional dystrophin at the muscle fiber membranes. Multiple therapeutic approaches are currently in (pre)clinical development, aimed at restoring expression of (truncated) dystrophin. Key questions in this phase relate to route of drug administration, dose regimen, and levels of dystrophin required to improve muscle function. A series of studies applying antisense oligonucleotides (AONs) in the mdx mouse model for DMD has been reported over the last two decades, claiming a variable range of exon skipping and increased dystrophin levels correlated to some functional improvement. The aim of this study was to compare the efficacy of subcutaneous (SC) versus intravenous (IV) dosing routes of an mdx-specific AON at both the molecular and functional level, using state-of-the-art quantitative technologies, including digital droplet polymerase chain reaction, capillary Western immunoassay, magnetic resonance imaging, and automated kinematic analysis. The majority of all readouts we quantified, both molecular and functional, showed that IV dosing of the AON had a more pronounced beneficial effect than SC dosing in mdx mice. Last, but not least, the more quantitative molecular and functional data obtained in this study suggest that low levels of dystrophin protein of at least 2.5% of wild type may already have a beneficial effect on muscle leakiness and may improve motor performance of mdx mice.


Exons/drug effects , Genetic Therapy , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/pharmacology , Animals , Disease Models, Animal , Exons/genetics , Humans , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Oligonucleotides, Antisense/genetics
4.
Mol Ther Nucleic Acids ; 17: 601-614, 2019 Sep 06.
Article En | MEDLINE | ID: mdl-31394429

Spinocerebellar ataxia type 3 (SCA3) and type 1 (SCA1) are dominantly inherited neurodegenerative disorders that are currently incurable. Both diseases are caused by a CAG-repeat expansion in exon 10 of the Ataxin-3 and exon 8 of the Ataxin-1 gene, respectively, encoding an elongated polyglutamine tract that confers toxic properties to the resulting proteins. We have previously shown lowering of the pathogenic polyglutamine protein in Huntington's disease mouse models using (CUG)7, a CAG repeat-targeting antisense oligonucleotide. Here we evaluated the therapeutic capacity of (CUG)7 for SCA3 and SCA1, in vitro in patient-derived cell lines and in vivo in representative mouse models. Repeated intracerebroventricular (CUG)7 administration resulted in a significant reduction of mutant Ataxin-3 and Ataxin-1 proteins throughout the brain of SCA3 and SCA1 mouse models, respectively. Furthermore, in both a SCA3 patient cell line and the MJD84.2 mouse model, (CUG)7 induced formation of a truncated Ataxin-3 protein species lacking the polyglutamine stretch, likely arising from (CUG)7-mediated exon 10 skipping. In contrast, skipping of exon 8 of Ataxin-1 did not significantly contribute to the Ataxin-1 protein reduction observed in (CUG)7-treated SCA1154Q/2Q mice. These findings support the therapeutic potential of a single CAG repeat-targeting AON for the treatment of multiple polyglutamine disorders.

5.
PLoS One ; 12(2): e0171127, 2017.
Article En | MEDLINE | ID: mdl-28182673

The aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington's disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15-60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice. This correction at the molecular level resulted in an improvement of performance in multiple motor tasks, increased whole brain and cortical volume, reduced levels of the gliosis marker myo-inositol, increased levels of the neuronal integrity marker N-aceyl aspartate and increased mRNA levels of the striatal marker Darpp-32. These neuroanatomical and neurochemical changes, together with the improved motor performance, suggest that treatment with (CUG)7 ameliorates basal ganglia dysfunction. The HTT-lowering was confirmed by an independent study in Q175 mice using a similar (CUG)7 AON dosing regimen, further demonstrating a lasting reduction of mutant HTT protein in striatum, hippocampus and cortex for up to 18 weeks post last infusion along with an increase in motor activity. Based on these encouraging results, (CUG)7 may thus offer an interesting alternative HTT-lowering strategy for HD.


Genetic Therapy , Huntingtin Protein/genetics , Huntington Disease/therapy , RNA, Antisense/genetics , Trinucleotide Repeat Expansion , Animals , Brain/metabolism , Brain/pathology , Female , Gliosis , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity
6.
Mol Ther ; 14(3): 401-7, 2006 Sep.
Article En | MEDLINE | ID: mdl-16753346

Through antisense-induced single-, double-, and multiexon skipping, we have previously demonstrated restoration of dystrophin expression in Duchenne muscular dystrophy (DMD) patient-derived muscle cells in vitro. In this study we further explored the frontiers of this strategy by using specific combinations of 2'-O-methyl phosphorothioate antisense oligonucleotides (AONs) targeting either one or multiple exons. We show that skipping efficiencies may indeed be improved by targeting two putative splicing regulatory sequences within one exon. In particular, such double targeting was effective for the thus far "unskippable" exons 47 and 57. We previously reported the feasibility of multiexon skipping spanning exon 45 to exon 51, using a combination of AONs targeting both outer exons (45 and 51). This would be applicable to 13% of all DMD patients. We here explored the frontiers of multiexon skipping both to increase the number of patients that can be treated with the same set of AONs and to mimic large deletions found in relatively mildly affected BMD patients. We aimed at inducing larger multiexon-skipping stretches, such as exons 17-51, exons 42-55, and exons 45-59. However, this appeared complicated and may be dependent on cotranscriptional splicing and the size of the flanking introns.


Dystrophin/genetics , Exons , Gene Targeting/methods , Genetic Therapy , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/therapeutic use , Cells, Cultured , Humans , Muscle Fibers, Skeletal/metabolism , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , RNA Splicing , Sequence Deletion , Transfection
...