Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Nature ; 619(7970): 572-584, 2023 Jul.
Article En | MEDLINE | ID: mdl-37468586

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Intestines , Single-Cell Analysis , Humans , Cell Differentiation/genetics , Chromatin/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , Intestinal Mucosa/cytology , Intestines/cytology , Intestines/immunology , Single-Cell Gene Expression Analysis
2.
bioRxiv ; 2023 May 16.
Article En | MEDLINE | ID: mdl-37292896

The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.

3.
Allergy ; 78(7): 1922-1933, 2023 07.
Article En | MEDLINE | ID: mdl-36929161

BACKGROUND: The impact of exposure to air pollutants, such as fine particulate matter (PM), on the immune system and its consequences on pediatric asthma, are not well understood. We investigated whether ambient levels of fine PM with aerodynamic diameter ≤2.5 microns (PM2.5 ) are associated with alterations in circulating monocytes in children with or without asthma. METHODS: Monocyte phenotyping was performed by cytometry time-of-flight (CyTOF). Cytokines were measured using cytometric bead array and Luminex assay. ChIP-Seq was utilized to address histone modifications in monocytes. RESULTS: Increased exposure to ambient PM2.5 was linked to specific monocyte subtypes, particularly in children with asthma. Mechanistically, we hypothesized that innate trained immunity is evoked by a primary exposure to fine PM and accounts for an enhanced inflammatory response after secondary stimulation in vitro. We determined that the trained immunity was induced in circulating monocytes by fine particulate pollutants, and it was characterized by the upregulation of proinflammatory mediators, such as TNF, IL-6, and IL-8, upon stimulation with house dust mite or lipopolysaccharide. This phenotype was epigenetically controlled by enhanced H3K27ac marks in circulating monocytes. CONCLUSION: The specific alterations of monocytes after ambient pollution exposure suggest a possible prognostic immune signature for pediatric asthma, and pollution-induced trained immunity may provide a potential therapeutic target for asthmatic children living in areas with increased air pollution.


Air Pollutants , Air Pollution , Asthma , Humans , Particulate Matter/adverse effects , Monocytes , Trained Immunity , Air Pollutants/adverse effects , Air Pollutants/analysis , Asthma/etiology , Asthma/chemically induced , Air Pollution/adverse effects
4.
Cell Syst ; 13(8): 598-614.e6, 2022 08 17.
Article En | MEDLINE | ID: mdl-35690068

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.


COVID-19 , Adult , CD56 Antigen/analysis , CD56 Antigen/metabolism , COVID-19/genetics , Cytokines/metabolism , Genetic Predisposition to Disease , Humans , Killer Cells, Natural/chemistry , Killer Cells, Natural/metabolism , Polymorphism, Single Nucleotide
5.
Neuron ; 110(6): 992-1008.e11, 2022 03 16.
Article En | MEDLINE | ID: mdl-35045337

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.


Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Adaptor Proteins, Signal Transducing/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Cell Death/genetics , Cytoskeletal Proteins/genetics , Genome-Wide Association Study , Humans , Induced Pluripotent Stem Cells/pathology , Motor Neurons/pathology
6.
medRxiv ; 2021 Jun 21.
Article En | MEDLINE | ID: mdl-34189540

The determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.

7.
Dev Cell ; 56(7): 1043-1055.e4, 2021 04 05.
Article En | MEDLINE | ID: mdl-33823130

Dynamic cell identities underlie flexible developmental programs. The stomatal lineage in the Arabidopsis leaf epidermis features asynchronous and indeterminate divisions that can be modulated by environmental cues. The products of the lineage, stomatal guard cells and pavement cells, regulate plant-atmosphere exchanges, and the epidermis as a whole influences overall leaf growth. How flexibility is encoded in development of the stomatal lineage and how cell fates are coordinated in the leaf are open questions. Here, by leveraging single-cell transcriptomics and molecular genetics, we uncovered models of cell differentiation within Arabidopsis leaf tissue. Profiles across leaf tissues identified points of regulatory congruence. In the stomatal lineage, single-cell resolution resolved underlying cell heterogeneity within early stages and provided a fine-grained profile of guard cell differentiation. Through integration of genome-scale datasets and spatiotemporally precise functional manipulations, we also identified an extended role for the transcriptional regulator SPEECHLESS in reinforcing cell fate commitment.


Arabidopsis/growth & development , Plant Leaves/growth & development , Plant Stomata/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Lineage , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stomata/cytology , RNA-Seq , Single-Cell Analysis
8.
Development ; 145(6)2018 03 21.
Article En | MEDLINE | ID: mdl-29467245

Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.


Arabidopsis/metabolism , Cell Division/genetics , Cyclin D/metabolism , Plant Stomata/cytology , Arabidopsis/cytology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , Cell Lineage/genetics , Gene Expression Regulation, Plant/genetics , Plant Epidermis/cytology , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Stomata/metabolism , Real-Time Polymerase Chain Reaction
10.
Plant Physiol ; 173(1): 582-599, 2017 01.
Article En | MEDLINE | ID: mdl-27879390

Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.


Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Aurora Kinases/metabolism , Microtubule-Associated Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Aurora Kinases/genetics , Cell Cycle , Gene Expression Regulation, Plant , Gene Knockout Techniques , Metaphase , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism
11.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Article En | MEDLINE | ID: mdl-27497297

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cyclin B/metabolism , Cyclin-Dependent Kinases/metabolism , Recombinational DNA Repair , Arabidopsis Proteins/genetics , Cyclin B/genetics , Cyclin-Dependent Kinases/genetics , Rad51 Recombinase/metabolism , Transcription Factors/metabolism
12.
Trends Plant Sci ; 21(1): 69-79, 2016 Jan.
Article En | MEDLINE | ID: mdl-26616196

Aurora kinases are evolutionarily conserved key mitotic determinants in all eukaryotes. Yeasts contain a single Aurora kinase, whereas multicellular eukaryotes have at least two functionally diverged members. The involvement of Aurora kinases in human cancers has provided an in-depth mechanistic understanding of their roles throughout cell division in animal and yeast models. By contrast, understanding Aurora kinase function in plants is only starting to emerge. Nevertheless, genetic, cell biological, and biochemical approaches have revealed functional diversification between the plant Aurora kinases and suggest a role in formative (asymmetric) divisions, chromatin modification, and genome stability. This review provides an overview of the accumulated knowledge on the function of plant Aurora kinases as well as some major challenges for the future.


Aurora Kinases/metabolism , Plant Development , Plants/enzymology , Protein Binding , Protein Transport , Substrate Specificity
13.
Plant Cell ; 24(10): 4083-95, 2012 Oct.
Article En | MEDLINE | ID: mdl-23104828

Formative, also called asymmetric, cell divisions produce daughter cells with different identities. Like other divisions, formative divisions rely first of all on the cell cycle machinery with centrally acting cyclin-dependent kinases (CDKs) and their cyclin partners to control progression through the cell cycle. However, it is still largely obscure how developmental cues are translated at the cellular level to promote asymmetric divisions. Here, we show that formative divisions in the shoot and root of the flowering plant Arabidopsis thaliana are controlled by a common mechanism that relies on the activity level of the Cdk1 homolog CDKA;1, with medium levels being sufficient for symmetric divisions but high levels being required for formative divisions. We reveal that the function of CDKA;1 in asymmetric cell divisions operates through a transcriptional regulation system that is mediated by the Arabidopsis Retinoblastoma homolog RBR1. RBR1 regulates not only cell cycle genes, but also, independent of the cell cycle transcription factor E2F, genes required for formative divisions and cell fate acquisition, thus directly linking cell proliferation with differentiation. This mechanism allows the implementation of spatial information, in the form of high kinase activity, with intracellular gating of developmental decisions.


Arabidopsis Proteins/physiology , Arabidopsis/cytology , Asymmetric Cell Division/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Cell Proliferation , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/physiology , E2F Transcription Factors/physiology , Gene Expression Regulation, Plant , Meristem/cytology , Meristem/metabolism , Meristem/ultrastructure , Phenotype , Plant Roots/cytology , Plant Roots/metabolism , Plant Roots/ultrastructure , Plant Stomata/metabolism , Plant Stomata/ultrastructure
14.
PLoS Genet ; 8(8): e1002847, 2012.
Article En | MEDLINE | ID: mdl-22879821

The decision to replicate its DNA is of crucial importance for every cell and, in many organisms, is decisive for the progression through the entire cell cycle. A comparison of animals versus yeast has shown that, although most of the involved cell-cycle regulators are divergent in both clades, they fulfill a similar role and the overall network topology of G1/S regulation is highly conserved. Using germline development as a model system, we identified a regulatory cascade controlling entry into S phase in the flowering plant Arabidopsis thaliana, which, as a member of the Plantae supergroup, is phylogenetically only distantly related to Opisthokonts such as yeast and animals. This module comprises the Arabidopsis homologs of the animal transcription factor E2F, the plant homolog of the animal transcriptional repressor Retinoblastoma (Rb)-related 1 (RBR1), the plant-specific F-box protein F-BOX-LIKE 17 (FBL17), the plant specific cyclin-dependent kinase (CDK) inhibitors KRPs, as well as CDKA;1, the plant homolog of the yeast and animal Cdc2⁺/Cdk1 kinases. Our data show that the principle of a double negative wiring of Rb proteins is highly conserved, likely representing a universal mechanism in eukaryotic cell-cycle control. However, this negative feedback of Rb proteins is differently implemented in plants as it is brought about through a quadruple negative regulation centered around the F-box protein FBL17 that mediates the degradation of CDK inhibitors but is itself directly repressed by Rb. Biomathematical simulations and subsequent experimental confirmation of computational predictions revealed that this regulatory circuit can give rise to hysteresis highlighting the here identified dosage sensitivity of CDK inhibitors in this network.


Arabidopsis/metabolism , Flowers/metabolism , G1 Phase/genetics , Gene Expression Regulation, Plant , S Phase/genetics , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Computer Simulation , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , E2F4 Transcription Factor/genetics , E2F4 Transcription Factor/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Flowers/genetics , Gene Regulatory Networks , Models, Biological , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
15.
Dev Cell ; 22(5): 1030-40, 2012 May 15.
Article En | MEDLINE | ID: mdl-22595674

Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cyclin-Dependent Kinases/genetics , S Phase/physiology , Arabidopsis/embryology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , CDC2-CDC28 Kinases/genetics , CDC2-CDC28 Kinases/metabolism , Cyclin-Dependent Kinases/metabolism , Evolution, Molecular , Microscopy, Electron, Scanning , Mitosis/physiology , Mutation , Plant Roots/embryology , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/embryology , Plant Shoots/genetics , Plant Shoots/metabolism
16.
Plant Cell ; 23(4): 1435-48, 2011 Apr.
Article En | MEDLINE | ID: mdl-21498679

A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress.


Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Differentiation , DNA Replication , Plant Vascular Bundle/cytology , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Bleomycin/pharmacology , Cell Death/drug effects , Cell Differentiation/drug effects , Cluster Analysis , DNA Repair/drug effects , DNA Replication/drug effects , Enzyme Stability/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Hydroxyurea/pharmacology , Kinetics , Meristem/cytology , Meristem/drug effects , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Vascular Bundle/drug effects , S Phase/drug effects , Stress, Physiological/drug effects , Time Factors
17.
Plant Signal Behav ; 5(12): 1613-8, 2010 Dec.
Article En | MEDLINE | ID: mdl-21139435

Plant growth and proliferation control is coming into a global focus due to recent ecological and economical developments. Plants represent not only the largest food supply for mankind but also may serve as a global source of renewable energies. However, plant breeding has to accomplish a tremendous boost in yield to match the growing demand of a still rapidly increasing human population. Moreover, breeding has to adjust to changing environmental conditions, in particular increased drought. Regulation of cell-cycle control is a major determinant of plant growth and therefore an obvious target for plant breeding. Furthermore, cell-cycle control is also crucial for the DNA damage response, for instance upon irradiation. Thus, an in-depth understanding of plant cell-cycle regulation is of importance beyond a scientific point of view. The mere presence of many conserved core cell-cycle regulators, e.g. CDKs, cyclins, or CDK inhibitors, has formed the idea that the cell cycle in plants is exactly or at least very similarly controlled as in yeast or human cells. Here together with a recent publication we demonstrate that this dogma is not true and show that the control of entry into mitosis is fundamentally different in plants versus yeast or metazoans. Our findings build an important base for the understanding and ultimate modulation of plant growth not only during unperturbed but also under harsh environmental conditions.


Cell Cycle , Plant Cells , Yeasts/cytology , Animals , DNA Damage , cdc25 Phosphatases/physiology
18.
Plant Cell ; 21(11): 3641-54, 2009 Nov.
Article En | MEDLINE | ID: mdl-19948791

Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cell Cycle Proteins/genetics , Cell Proliferation , Cyclin-Dependent Kinases/genetics , DNA Damage/genetics , DNA Repair/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Binding Sites/genetics , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Evolution, Molecular , Genes, cdc/physiology , Mathematics , Mitosis/genetics , Phosphorylation , Plant Structures/genetics , Plant Structures/growth & development , Plant Structures/metabolism , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism
...