Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Pharm Res ; 37(10): 190, 2020 Sep 07.
Article En | MEDLINE | ID: mdl-32895773

PURPOSE: Evaluation of product viscosity, density and aeration on the dose delivery and accuracy for intravitreal injections with commonly used commercially available hypodermic 1 mL syringes. METHODS: Six commercially available hypodermic 1 mL syringes with different specifications were used for the study. Syringes were filled with the test solutions with different densities and viscosities. Syringes were also subjected to shaking stress to introduce aeration in the test solutions in the presence of different surfactant concentrations with and without high antibody concentration. Target intravitreal volumes of 100 µL, 50 µL and 30 µL were tested to assess dosing accuracy in a controlled simulated administration setup using DIN ISO 11040-4 guidelines and Zwick/Roell Z010 TN instrument. RESULTS: With increasing product viscosity, higher volumes and hence doses were delivered especially for very low volumes like 50 µL and 30 µL. No impact of increasing product density was found on the delivered dose. The presence of surfactants or high protein concentration can lead to aeration, which also negatively affects the dose accuracy and precision. CONCLUSION: Formulation parameters like viscosity can have an impact on dose delivery using hypodermic syringes for intravitreal injections and on the resulting glide force.


Drug Compounding , Intravitreal Injections/methods , Syringes , Excipients , Pharmaceutical Solutions , Proteins/chemistry , Reproducibility of Results , Surface-Active Agents , Viscosity
3.
Org Biomol Chem ; 16(40): 7503-7512, 2018 10 17.
Article En | MEDLINE | ID: mdl-30276385

The bifunctional chelator NODIA-Me holds promise for radiopharmaceutical development. NODIA-Me is based on the macrocycle TACN (1,4,7-triazacyclononane) and incorporates two additional methylimidazole arms for metal chelation and an acetic acid residue for bioconjugation. The original two step synthesis was less than optimal due to low yields and the requirement of semi-preparative RP-HPLC purifications. Here, the overall yield for the preparation of NODIA-Me was improved two- to five-fold via two synthetic routes using different protection/deprotection techniques. This way, it was possible (1) to prepare of NODIA-Me on multi-gram scale and (2) to avoid time-consuming HPLC purifications. Inspired by recent results with nat/68Ga3+, preliminary studies on the radiolabeling properties and complex formation of NODIA-Me with nat/111In3+ were performed. Quantitative radiochemical yields were achieved at ambient temperature providing molar activities of ∼30 MBq nmol-1, which could be increased to ∼240 MBq nmol-1 at 95 °C. At r.t., pH 5.5 was optimal for 111In-labeling, but quantitative yields were also achieved in the pH range from 5.5 to 8.2, when the reaction temperature was increased. Stability tests of 111In complexes in vitro revealed high kinetic stabilities in serum and ligand challenge experiments, which is a consequence of the formation of rigid 1 : 1 indium chelates as shown by NMR studies in solution. In summary, the new synthetic routes afford the BFC NODIA-Me in high yields and on large scale. Further, 111In complexation experiments broaden the scope of our chelating system for radiopharmaceutical applications.


Chelating Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Imidazoles/chemistry , Indium/chemistry , Chemistry Techniques, Synthetic , Hydrophobic and Hydrophilic Interactions , Isotope Labeling , Kinetics , Ligands
4.
Inorg Chem ; 56(15): 9097-9110, 2017 Aug 07.
Article En | MEDLINE | ID: mdl-28742337

We have recently introduced a 1,4,7-triazacyclononane (TACN) based chelating system with additional five-membered azaheterocyclic substituents for complexation of radioactive Cu2+ ions. In this work, we investigated the complexation properties of these novel chelators with Ga3+. In labeling experiments, we could show that the penta- and hexadentate imidazole derivatives NODIA-Me 4 and NOTI-Me 1 can be labeled with 68Ga in specific activities up to ∼30 MBq nmol-1, while the corresponding thiazole derivative NOTThia 2 did not label satisfactorily under identical conditions. NMR studies on the Ga complexes of 1 and the model compound NODIA-Me-NH-Me 5 revealed formation of rigid 1:1 chelates with a slow macrocyclic interconversion and inert Ga-N bonds to the methylimidazole residues on the NMR time scale. The TACN-derived bifunctional chelator NODIA-Me was furthermore conjugated to a prostate-specific membrane antigen (PSMA) targeting moiety to give the corresponding bioconjugate NODIA-Me-PSMA 7. Serum stability and ligand challenge experiments of 68Ga-7 confirmed formation of a stable complex for up to 4 h. The remaining coordination site of five-coordinate Ga complexes was found to be occupied by monodentate ligands including hydroxide and chloride anions depending on the conditions. According to density functional theory calculations, coordination of monodentate ligands as well as of the amide group for the bioconjugated ligand are energetically plausible. Finally, the labeled bioconjugate 68Ga-7 exhibited rapid renal clearance in biodistribution studies performed by small animal PET imaging with no indication of transchelation/demetalation in vivo. Altogether, our results provide strong evidence for a stable Ga complexation of our novel TACN-based chelators bearing imidazole arms. Despite the formation of two complexes incorporating different monodentate ligands in vitro, the imidazole type ligands show promise as chelating agents for the future development of gallium based radiopharmaceuticals.


Chelating Agents/pharmacology , Coordination Complexes/pharmacology , Heterocyclic Compounds/pharmacology , Radiopharmaceuticals/pharmacology , Animals , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Stability , Gallium Radioisotopes , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Kinetics , Ligands , Mice, Inbred BALB C , Models, Chemical , Molecular Structure , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
...