Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Acta Biomater ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871204

RESUMEN

Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.

2.
Jt Comm J Qual Patient Saf ; 50(7): 492-499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705745

RESUMEN

BACKGROUND: Safety event reporting and review is well established within US hospitals, but systems to ensure implementation of changes to improve patient safety are less developed. METHODS: Contributing factors and corrective actions for events brought to a tertiary care academic medical center's multidisciplinary hospital-level safety event review meeting were prospectively collected from 2020 to 2021. Corrective actions were tracked to completion through 2023. The authors retrospectively coded corrective actions by category and strength using the US Department of Veterans Affairs/Institute for Healthcare Improvement Action Hierarchy Tool. RESULTS: In the analysis of 67 events, 15 contributing factor themes were identified and resulted in 148 corrective actions. Of these events, 85.1% (57/67) had more than one corrective action. Of the 148 corrective actions, 84 (56.8%) were rated as weak, 36 (24.3%) as intermediate, 15 (10.1%) strong, and 13 (8.8%) needed more information. The completion rate was 97.6% (for weak corrective actions), 80.6% (intermediate), and 73.3% (strong) (p < 0.0001). CONCLUSION: Safety events were often addressed with multiple corrective actions. There was an inverse relationship between intervention strength and completion, the strongest interventions with the lowest rate of completion. By integrating action strength and completion status into corrective action follow-up, health care organizations may more effectively identify and address those barriers to completing the strongest interventions that ultimately achieve high reliability.


Asunto(s)
Errores Médicos , Seguridad del Paciente , Humanos , Seguridad del Paciente/normas , Errores Médicos/prevención & control , Errores Médicos/estadística & datos numéricos , Mejoramiento de la Calidad/organización & administración , Estados Unidos , Administración de la Seguridad/organización & administración , Administración de la Seguridad/normas , Centros Médicos Académicos/organización & administración , Estudios Retrospectivos
4.
J Biomed Mater Res A ; 112(4): 574-585, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37345954

RESUMEN

Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.


Asunto(s)
Arterias , Glicerol , Polímeros , Humanos , Polímeros/farmacología , Prótesis Vascular , Regeneración
6.
Mater Today Bio ; 22: 100727, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37529421

RESUMEN

Mesenchymal stem cells (MSCs) used for clinical applications require in vitro expansion to achieve therapeutically relevant numbers. However, conventional planar cell expansion approaches using tissue culture vessels are inefficient, costly, and can trigger MSC phenotypic and functional decline. Here we present a one-step dry plasma process to modify the internal surfaces of three-dimensional (3D) printed, high surface area to volume ratio (high-SA:V) porous scaffolds as platforms for stem cell expansion. To address the long-lasting challenge of uniform plasma treatment within the micrometre-sized pores of scaffolds, we developed a packed bed plasma immersion ion implantation (PBPI3) technology by which plasma is ignited inside porous materials for homogeneous surface activation. COMSOL Multiphysics simulations support our experimental data and provide insights into the role of electrical field and pressure distribution in plasma ignition. Spatial surface characterisation inside scaffolds demonstrates the homogeneity of PBPI3 activation. The PBPI3 treatment induces radical-containing chemical structures that enable the covalent attachment of biomolecules via a simple, non-toxic, single-step incubation process. We showed that PBPI3-treated scaffolds biofunctionalised with fibroblast growth factor 2 (FGF2) significantly promoted the expansion of MSCs, preserved cell phenotypic expression, and multipotency, while reducing the usage of costly growth factor supplements. This breakthrough PBPI3 technology can be applied to a wide range of 3D polymeric porous scaffolds, paving the way towards developing new biomimetic interfaces for tissue engineering and regenerative medicine.

7.
Eur J Cell Biol ; 102(2): 151331, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37311287

RESUMEN

Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Senescencia Celular/fisiología , Rejuvenecimiento
8.
Regen Biomater ; 10: rbac087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683733

RESUMEN

The highly organized extracellular matrix (ECM) of musculoskeletal tissues, encompassing tendons, ligaments and muscles, is structurally anisotropic, hierarchical and multi-compartmental. These features collectively contribute to their unique function. Previous studies have investigated the effect of tissue-engineered scaffold anisotropy on cell morphology and organization for musculoskeletal tissue repair and regeneration, but the hierarchical arrangement of ECM and compartmentalization are not typically replicated. Here, we present a method for multi-compartmental scaffold design that allows for physical mimicry of the spatial architecture of musculoskeletal tissue in regenerative medicine. This design is based on an ECM-inspired macromolecule scaffold. Polycaprolactone (PCL) scaffolds were fabricated with aligned fibers by electrospinning and mechanical stretching, and then surface-functionalized with the cell-supporting ECM protein molecule, tropoelastin (TE). TE was attached using two alternative methods that allowed for either physisorption or covalent attachment, where the latter was achieved by plasma ion immersion implantation (PIII). Aligned fibers stimulated cell elongation and improved cell alignment, in contrast to randomly oriented fibers. TE coatings bound by physisorption or covalently following 200 s PIII treatment promoted fibroblast proliferation. This represents the first cytocompatibility assessment of novel PIII-treated TE-coated PCL scaffolds. To demonstrate their versatility, these 2D anisotropic PCL scaffolds were assembled into 3D hierarchical constructs with an internally compartmentalized structure to mimic the structure of musculoskeletal tissue.

9.
Acta Biomater ; 163: 131-145, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364318

RESUMEN

Elastin is a key elastomeric protein responsible for the elasticity of many organs, including heart, skin, and blood vessels. Due to its intrinsic long life and low turnover rate, damage in elastin induced by pathophysiological conditions, such as hypercalcemia and hyperglycemia, accumulates during biological aging and in aging-associated diseases, such as diabetes mellitus and atherosclerosis. Prior studies have shown that calcification induced by hypercalcemia deteriorates the function of aortic tissues. Glycation of elastin is triggered by hyperglycemia and associated with elastic tissue damage and loss of mechanical functions via the accumulation of advanced glycation end products. To evaluate the effects on elastin's structural conformations and elasticity by hypercalcemia and hyperglycemia at the molecular scale, we perform classical atomistic and steered molecular dynamics simulations on tropoelastin, the soluble precursor of elastin, under different conditions. We characterize the interaction sites of glucose and calcium and associated structural conformational changes. Additionally, we find that elevated levels of calcium ions and glucose hinder the extensibility of tropoelastin by rearranging structural domains and altering hydrogen bonding patterns, respectively. Overall, our investigation helps to reveal the behavior of tropoelastin and the biomechanics of elastin biomaterials in these physiological environments. STATEMENT OF SIGNIFICANCE: Elastin is a key component of elastic fibers which endow many important tissues and organs, from arteries and veins, to skin and heart, with strength and elasticity. During aging and aging-associated diseases, such as diabetes mellitus and atherosclerosis, physicochemical stressors, including hypercalcemia and hyperglycemia, induce accumulated irreversible damage in elastin, and consequently alter mechanical function. Yet, molecular mechanisms associated with these processes are still poorly understood. Here, we present the first study on how these changes in elastin structure and extensibility are induced by hypercalcemia and hyperglycemia at the molecular scale, revealing the essential roles that calcium and glucose play in triggering structural alterations and mechanical stiffness. Our findings yield critical insights into the first steps of hypercalcemia- and hyperglycemia-mediated aging.


Asunto(s)
Aterosclerosis , Hipercalcemia , Hiperglucemia , Humanos , Elastina/química , Tropoelastina/química , Calcio , Glucosa
10.
Circ Res ; 132(1): 72-86, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36453283

RESUMEN

BACKGROUND: Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS: We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS: We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.


Asunto(s)
Infarto del Miocardio , Miocardio , Humanos , Ratas , Animales , Miocardio/metabolismo , Elastina/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Cicatriz , Volumen Sistólico , Función Ventricular Izquierda , Miocitos Cardíacos/metabolismo , Colágeno/metabolismo , Remodelación Ventricular
11.
JAMA Intern Med ; 183(2): 164-167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534384

RESUMEN

This cross-sectional study quantifies trends in discarded drug spending since the onset of mandated reporting.


Asunto(s)
Medicare Part B , Anciano , Humanos , Estados Unidos
12.
BMC Biol ; 20(1): 282, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36527053

RESUMEN

BACKGROUND: As well known to any photographer, controlling the "field of view" offers an extremely powerful mechanism by which to adjust target acquisition. Only a few natural sensory systems can actively control their field of view (e.g., dolphins, whales, and bats). Bats are known for their active sensing abilities and modify their echolocation signals by actively controlling their spectral and temporal characteristics. Less is known about bats' ability to actively modify their bio-sonar field of view. RESULTS: We show that Pipistrellus kuhlii bats rapidly narrow their sensory field of view (i.e., their bio-sonar beam) when scanning a target. On-target vertical sonar beams were twofold narrower than off-target beams. Continuous measurements of the mouth gape of free-flying bats revealed that they control their bio-sonar beam by a ~3.6 mm widening of their mouth gape: namely, bats open their mouth to narrow the beam and vice versa. CONCLUSIONS: Bats actively and rapidly control their echolocation vertical beam width by modifying their mouth gape. We hypothesize that narrowing their vertical beam narrows the zone of ensonification when estimating the elevation of a target. In other words, bats open their mouth to improve sensory localization.


Asunto(s)
Quirópteros , Ecolocación , Animales , Boca , Vuelo Animal
13.
Sensors (Basel) ; 22(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501910

RESUMEN

Traditional direction-finding systems are based on processing the outputs of multiple spatially separated antennas. The impinging signal Angle-of-Arrival (AOA) is estimated using the relative phase and amplitude of the multiple outputs that are sampled simultaneously. Here, we explore the potential of a single moving antenna to provide useful direction finding of a single transmitter. If the transmitted signal frequency is steady enough during the collection of data, a single antenna can be moved while tracking the phase changes to provide an Angle-of-Arrival measurement. The advantages of a single-antenna sensor include the sensor size, the lack of a need for multiple-receiver synchronization in time and frequency, the lack of mutual antenna coupling, and the cost of the system. However, a single-antenna sensor requires an accurate knowledge of its position during the data collection and it is challenged by transmitter phase instability, signal modulation, and transmitter movement during the measurement integration time. We analyze the performance of the proposed sensor, support the analysis with simulations and finally, present measurements performed by hardware configured to check the validity of the proposed single-antenna sensor.

14.
Adv Mater ; 34(47): e2205614, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36120809

RESUMEN

Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.


Asunto(s)
Prótesis Vascular , Elastina , Ratones , Animales , Miocitos del Músculo Liso , Arterias , Colágeno
15.
J Law Biosci ; 9(2): lsac021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968225

RESUMEN

The development of autonomous artificial intelligence (A-AI) products in health care raises novel regulatory challenges, including how to ensure their safety and efficacy in real-world settings. Supplementing a device-centered regulatory scheme with a regulatory scheme that considers A-AI products as a 'physician extender' may improve the real-world monitoring of these technologies and produce other benefits, such as increased access to the services offered by these products. In this article, we review the three approaches to the oversight of nurse practitioners, one type of physician extender, in the USA and extrapolate these approaches to produce a framework for the oversight of A-AI products. Under the framework, the US Food and Drug Administration would evaluate A-AI products and determine whether they are allowed to operate independently of physician oversight; required to operate under some physician oversight via a 'collaborative protocol' model; or required to operate under direct physician oversight via a 'supervisory protocol' model.

16.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328809

RESUMEN

The discovery that cells secrete extracellular vesicles (EVs), which carry a variety of regulatory proteins, nucleic acids, and lipids, has shed light on the sophisticated manner by which cells can communicate and accordingly function. The bioactivity of EVs is not only defined by their internal content, but also through their surface associated molecules, and the linked downstream signaling effects they elicit in target cells. The extracellular matrix (ECM) contains signaling and structural molecules that are central to tissue maintenance and repair. Recently, a subset of EVs residing within the extracellular matrix has been identified. Although some roles have been proposed for matrix-bound vesicles, their role as signaling molecules within the ECM is yet to be explored. Given the close association of EVs and the ECM, it is not surprising that EVs partly mediate repair and regeneration by modulating matrix deposition and degradation through their cellular targets. This review addresses unique EV features that allow them to interact with and navigate through the ECM, describes how their release and content is influenced by the ECM, and emphasizes the emerging role of stem-cell derived EVs in tissue repair and regeneration through their matrix-modulating properties.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Transporte Biológico , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/metabolismo , Células Madre/metabolismo
17.
PLoS Comput Biol ; 18(3): e1009936, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259156

RESUMEN

One of the most difficult sensorimotor behaviors exhibited by flying animals is the ability to track another flying animal based on its sound emissions. From insects to mammals, animals display this ability in order to localize and track conspecifics, mate or prey. The pursuing individual must overcome multiple non-trivial challenges including the detection of the sounds emitted by the target, matching the input received by its (mostly) two sensors, localizing the direction of the sound target in real time and then pursuing it. All this has to be done rapidly as the target is constantly moving. In this project, we set to mimic this ability using a physical bio-mimetic autonomous drone. We equipped a miniature commercial drone with our in-house 2D sound localization electronic circuit which uses two microphones (mimicking biological ears) to localize sound signals in real-time and steer the drone in the horizontal plane accordingly. We focus on bat signals because bats are known to eavesdrop on conspecifics and follow them, but our approach could be generalized to other biological signals and other man-made signals. Using two different experiments, we show that our fully autonomous aviator can track the position of a moving sound emitting target and pursue it in real-time. Building an actual robotic-agent, forced us to deal with real-life difficulties which also challenge animals. We thus discuss the similarities and differences between our and the biological approach.


Asunto(s)
Quirópteros , Ecolocación , Animales , Humanos , Conducta Predatoria , Sonido , Dispositivos Aéreos No Tripulados
19.
Curr Opin Biotechnol ; 74: 15-20, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34781101

RESUMEN

Elastic fibers are an essential part of the pulmonary extracellular matrix (ECM). Intact elastin is required for normal function and its damage contributes profoundly to the etiology and pathology of lung disease. This highlights the need for novel lung-specific imaging methodology that enables high-resolution 3D visualization of the ECM. We consider elastin's involvement in chronic respiratory disease and examine recent methods for imaging and modeling of the lung in the context of advances in lung tissue engineering for research and clinical application.


Asunto(s)
Elastina , Matriz Extracelular , Pulmón/diagnóstico por imagen , Ingeniería de Tejidos
20.
Front Genet ; 12: 706662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539739

RESUMEN

Latent TGFß binding protein-4 (LTBP4) is a multi-domain glycoprotein, essential for regulating the extracellular bioavailability of TGFß and assembly of elastic fibre proteins, fibrillin-1 and tropoelastin. LTBP4 mutations are linked to autosomal recessive cutis laxa type 1C (ARCL1C), a rare congenital disease characterised by high mortality and severely disrupted connective tissues. Despite the importance of LTBP4, the structure and molecular consequences of disease mutations are unknown. Therefore, we analysed the structural and functional consequences of three ARCL1C causing point mutations which effect highly conserved cysteine residues. Our structural and biophysical data show that the LTBP4 N- and C-terminal regions are monomeric in solution and adopt extended conformations with the mutations resulting in subtle changes to their conformation. Similar to LTBP1, the N-terminal region is relatively inflexible, whereas the C-terminal region is flexible. Interaction studies show that one C-terminal mutation slightly decreases binding to fibrillin-1. We also found that the LTBP4 C-terminal region directly interacts with tropoelastin which is perturbed by both C-terminal ARCL1C mutations, whereas an N-terminal mutation increased binding to fibulin-4 but did not affect the interaction with heparan sulphate. Our results suggest that LTBP4 mutations contribute to ARCL1C by disrupting the structure and interactions of LTBP4 which are essential for elastogenesis in a range of mammalian connective tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...