Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 114: 105501, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37709241

RESUMEN

The primary vector of the trypanosome parasite causing human and animal African trypanosomiasis in Uganda is the riverine tsetse fly Glossina fuscipes fuscipes (Gff). Our study improved the Gff genome assembly with whole genome 10× Chromium sequencing of a lab reared pupae, identified autosomal versus sex-chromosomal regions of the genome with ddRAD-seq data from 627 field caught Gff, and identified SNPs associated with trypanosome infection with genome-wide association (GWA) analysis in a subset of 351 flies. Results from 10× Chromium sequencing greatly improved Gff genome assembly metrics and assigned a full third of the genome to the sex chromosome. Results from ddRAD-seq suggested possible sex-chromosome aneuploidy in Gff and identified a single autosomal SNP to be highly associated with trypanosome infection. The top associated SNP was ∼1100 bp upstream of the gene lecithin cholesterol acyltransferase (LCAT), an important component of the molecular pathway that initiates trypanosome lysis and protection in mammals. Results suggest that there may be naturally occurring genetic variation in Gff in genomic regions in linkage disequilibrium with LCAT that can protect against trypanosome infection, thereby paving the way for targeted research into novel vector control strategies that can promote parasite resistance in natural populations.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Humanos , Moscas Tse-Tse/genética , Moscas Tse-Tse/parasitología , Tripanosomiasis Africana/epidemiología , Uganda/epidemiología , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Trypanosoma/genética , Cromosomas Sexuales , Aneuploidia , Mamíferos
2.
iScience ; 26(7): 107108, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534171

RESUMEN

Lipid metabolism is critical for insect reproduction, especially for species that invest heavily in the early developmental stages of their offspring. The role of symbiotic bacteria during this process is understudied but likely essential. We examined the role of lipid metabolism during the interaction between the viviparous tsetse fly (Glossina morsitans morsitans) and its obligate endosymbiotic bacteria (Wigglesworthia glossinidia) during tsetse pregnancy. We observed increased CTP:phosphocholine cytidylyltransferase (cct1) expression during pregnancy, which is critical for phosphatidylcholine biosynthesis in the Kennedy pathway. Experimental removal of Wigglesworthia impaired lipid metabolism via disruption of the Kennedy pathway, yielding obese mothers whose developing progeny starve. Functional validation via experimental cct1 suppression revealed a phenotype similar to females lacking obligate Wigglesworthia symbionts. These results indicate that, in Glossina, symbiont-derived factors, likely B vitamins, are critical for the proper function of both lipid biosynthesis and lipolysis to maintain tsetse fly fecundity.

3.
Science ; 379(6633): eade1877, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36795837

RESUMEN

Tsetse flies transmit trypanosomes-parasites that cause devastating diseases in humans and livestock-across much of sub-Saharan Africa. Chemical communication through volatile pheromones is common among insects; however, it remains unknown if and how such chemical communication occurs in tsetse flies. We identified methyl palmitoleate (MPO), methyl oleate, and methyl palmitate as compounds that are produced by the tsetse fly Glossina morsitans and elicit strong behavioral responses. MPO evoked a behavioral response in male-but not virgin female-G. morsitans. G. morsitans males mounted females of another species, Glossina fuscipes, when they were treated with MPO. We further identified a subpopulation of olfactory neurons in G. morsitans that increase their firing rate in response to MPO and showed that infecting flies with African trypanosomes alters the flies' chemical profile and mating behavior. The identification of volatile attractants in tsetse flies may be useful for reducing disease spread.


Asunto(s)
Ácidos Grasos Volátiles , Neuronas Receptoras Olfatorias , Atractivos Sexuales , Moscas Tse-Tse , Animales , Femenino , Masculino , Atractivos Sexuales/farmacología , Atractivos Sexuales/fisiología , Trypanosoma , Moscas Tse-Tse/parasitología , Moscas Tse-Tse/fisiología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/fisiología
4.
PLoS Negl Trop Dis ; 16(11): e0010833, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441823

RESUMEN

Tsetse flies (Glossina spp.) feed exclusively on vertebrate blood. After a blood meal, the enteric endosymbiont Sodalis glossinidius is exposed to various environmental stressors including high levels of heme. To investigate how S. glossinidius morsitans (Sgm), the Sodalis subspecies that resides within the gut of G. morsitans, tolerates the heme-induced oxidative environment of tsetse's midgut, we used RNAseq to identify bacterial genes that are differentially expressed in cells cultured in high versus lower heme environments. Our analysis identified 436 genes that were significantly differentially expressed (> or < 2-fold) in the presence of high heme [219 heme-induced genes (HIGs) and 217 heme-repressed genes (HRGs)]. HIGs were enriched in Gene Ontology (GO) terms related to regulation of a variety of biological functions, including gene expression and metabolic processes. We observed that 11 out of 13 Sgm genes that were heme regulated in vitro were similarly regulated in bacteria that resided within tsetse's midgut 24 hr (high heme environment) and 96 hr (low heme environment) after the flies had consumed a blood meal. We used intron mutagenesis to make insertion mutations in 12 Sgm HIGs and observed no significant change in growth in vitro in any of the mutant strains in high versus low heme conditions. However, Sgm strains that carried mutations in genes encoding a putative undefined phosphotransferase sugar (PTS) system component (SG2427), fucose transporter (SG0182), bacterioferritin (SG2280), and a DNA-binding protein (SGP1-0002), presented growth and/or survival defects in tsetse midguts as compared to normal Sgm. These findings suggest that the uptake up of sugars and storage of iron represent strategies that Sgm employs to successfully reside within the high heme environment of its tsetse host's midgut. Our results are of epidemiological relevance, as many hematophagous arthropods house gut-associated bacteria that mediate their host's competency as a vector of disease-causing pathogens.


Asunto(s)
Moscas Tse-Tse , Animales , Moscas Tse-Tse/genética , Hemo
5.
Microbiology (Reading) ; 168(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36129743

RESUMEN

Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.


Asunto(s)
Moscas Tse-Tse , Wigglesworthia , Amidohidrolasas/metabolismo , Animales , Antiparasitarios/metabolismo , Simbiosis , Moscas Tse-Tse/parasitología , Moscas Tse-Tse/fisiología , Vitaminas/metabolismo , Wigglesworthia/metabolismo
6.
Trends Parasitol ; 38(8): 697-708, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643853

RESUMEN

Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous microbiota that functionally complements their host's biology. Different arthropod vectors are ecologically and behaviorally distinct, and as such, their relationships with symbiotic microbes vary. In this review, we summarize the recent discoveries that reveal how bacterial metabolic activities influence development, nutrition, and pathogen defense in mosquitoes, ticks, triatome bugs, and sand flies. These studies provide a foundation for a systematic understanding of vector-microbiota interactions and for the development of integrated approaches to control vector-borne diseases.


Asunto(s)
Artrópodos , Microbiota , Garrapatas , Animales , Vectores Artrópodos/microbiología , Artrópodos/microbiología , Vectores de Enfermedades , Humanos , Mosquitos Vectores
7.
PLoS Pathog ; 17(9): e1009539, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529715

RESUMEN

Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.


Asunto(s)
Insectos Vectores/microbiología , Insectos Vectores/fisiología , Spiroplasma , Simbiosis/fisiología , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/fisiología , Animales , Femenino , Masculino
8.
PLoS Pathog ; 17(6): e1009475, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34107000

RESUMEN

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.


Asunto(s)
Homeostasis/fisiología , Intestinos/fisiología , MicroARNs/genética , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/genética , Moscas Tse-Tse/parasitología , Animales , Animales Modificados Genéticamente , Microbioma Gastrointestinal/fisiología , Genes de Insecto , Insectos Vectores/genética , Insectos Vectores/parasitología , Trypanosoma
9.
Proc Natl Acad Sci U S A ; 117(5): 2613-2621, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964820

RESUMEN

Tsetse-transmitted African trypanosomes must develop into mammalian-infectious metacyclic cells in the fly's salivary glands (SGs) before transmission to a new host. The molecular mechanisms that underlie this developmental process, known as metacyclogenesis, are poorly understood. Blocking the few metacyclic parasites deposited in saliva from further development in the mammal could prevent disease. To obtain an in-depth perspective of metacyclogenesis, we performed single-cell RNA sequencing (scRNA-seq) from a pool of 2,045 parasites collected from infected tsetse SGs. Our data revealed three major cell clusters that represent the epimastigote, and pre- and mature metacyclic trypanosome developmental stages. Individual cell level data also confirm that the metacyclic pool is diverse, and that each parasite expresses only one of the unique metacyclic variant surface glycoprotein (mVSG) coat protein transcripts identified. Further clustering of cells revealed a dynamic transcriptomic and metabolic landscape reflective of a developmental program leading to infectious metacyclic forms preadapted to survive in the mammalian host environment. We describe the expression profile of proteins that regulate gene expression and that potentially play a role in metacyclogenesis. We also report on a family of nonvariant surface proteins (Fam10) and demonstrate surface localization of one member (named SGM1.7) on mature metacyclic parasites. Vaccination of mice with recombinant SGM1.7 reduced parasitemia early in the infection. Future studies are warranted to investigate Fam10 family proteins as potential trypanosome transmission blocking vaccine antigens. Our experimental approach is translationally relevant for developing strategies to prevent other insect saliva-transmitted parasites from infecting and causing disease in mammalian hosts.


Asunto(s)
Insectos Vectores/parasitología , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/genética , Moscas Tse-Tse/parasitología , Animales , Femenino , Humanos , Estadios del Ciclo de Vida , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología , ARN Protozoario/genética , Glándulas Salivales/parasitología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología
10.
PLoS Negl Trop Dis ; 13(11): e0007464, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31738754

RESUMEN

Tsetse flies (Diptera: Glossinidae) house a taxonomically diverse microbiota that includes environmentally acquired bacteria, maternally transmitted symbiotic bacteria, and pathogenic African trypanosomes. Sodalis glossinidius, which is a facultative symbiont that resides intra and extracellularly within multiple tsetse tissues, has been implicated as a mediator of trypanosome infection establishment in the fly's gut. Tsetse's gut-associated population of Sodalis are subjected to marked temperature fluctuations each time their ectothermic fly host imbibes vertebrate blood. The molecular mechanisms that Sodalis employs to deal with this heat stress are unknown. In this study, we examined the thermal tolerance and heat shock response of Sodalis. When grown on BHI agar plates, the bacterium exhibited the most prolific growth at 25oC, and did not grow at temperatures above 30oC. Growth on BHI agar plates at 31°C was dependent on either the addition of blood to the agar or reduction in oxygen levels. Sodalis was viable in liquid cultures for 24 hours at 30oC, but began to die upon further exposure. The rate of death increased with increased temperature. Similarly, Sodalis was able to survive for 48 hours within tsetse flies housed at 30oC, while a higher temperature (37oC) was lethal. Sodalis' genome contains homologues of the heat shock chaperone protein-encoding genes dnaK, dnaJ, and grpE, and their expression was up-regulated in thermally stressed Sodalis, both in vitro and in vivo within tsetse fly midguts. Arrested growth of E. coli dnaK, dnaJ, or grpE mutants under thermal stress was reversed when the cells were transformed with a low copy plasmid that encoded the Sodalis homologues of these genes. The information contained in this study provides insight into how arthropod vector enteric commensals, many of which mediate their host's ability to transmit pathogens, mitigate heat shock associated with the ingestion of a blood meal.


Asunto(s)
Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/fisiología , Estrés Fisiológico , Temperatura , Moscas Tse-Tse/microbiología , Animales , Bacterias , Proteínas Bacterianas/genética , Técnicas de Cultivo de Célula , Enterobacteriaceae/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Cinética , Simbiosis , Termotolerancia , Trypanosoma
11.
PLoS Negl Trop Dis ; 13(8): e0007340, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369548

RESUMEN

Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.


Asunto(s)
Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Insectos Vectores/microbiología , Spiroplasma/patogenicidad , Moscas Tse-Tse/microbiología , Animales , Coinfección , ADN Ribosómico/genética , Femenino , Insectos Vectores/parasitología , Masculino , Prevalencia , Spiroplasma/genética , Spiroplasma/fisiología , Simbiosis , Trypanosoma , Moscas Tse-Tse/parasitología , Uganda , Wolbachia
12.
mBio ; 10(3)2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164458

RESUMEN

Many symbionts supplement their host's diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly's salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is "hijacked" by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.IMPORTANCE Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector's MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects.


Asunto(s)
Ácido Fólico/biosíntesis , Simbiosis , Trypanosoma/fisiología , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Wigglesworthia/metabolismo , Animales , Vías Biosintéticas , Femenino , Tracto Gastrointestinal/parasitología , Interacciones Huésped-Parásitos , Masculino
14.
PLoS Genet ; 15(3): e1008005, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30875383

RESUMEN

Dipteran or "true" flies occupy nearly every terrestrial habitat, and have evolved to feed upon a wide variety of sources including fruit, pollen, decomposing animal matter, and even vertebrate blood. Here we analyze the molecular, genetic and cellular basis of odor response in the tsetse fly Glossina morsitans, which feeds on the blood of humans and their livestock, and is a vector of deadly trypanosomes. The G. morsitans antenna contains specialized subtypes of sensilla, some of which line a sensory pit not found in the fruit fly Drosophila. We characterize distinct patterns of G. morsitans Odor receptor (GmmOr) gene expression in the antenna. We devise a new version of the "empty neuron" heterologous expression system, and use it to functionally express several GmmOrs in a mutant olfactory receptor neuron (ORN) of Drosophila. GmmOr35 responds to 1-hexen-3-ol, an odorant found in human emanations, and also alpha-pinene, a compound produced by malarial parasites. Another receptor, GmmOr9, which is expressed in the sensory pit, responds to acetone, 2-butanone and 2-propanol. We confirm by electrophysiological recording that neurons of the sensory pit respond to these odorants. Acetone and 2-butanone are strong attractants long used in the field to trap tsetse. We find that 2-propanol is also an attractant for both G. morsitans and the related species G. fuscipes, a major vector of African sleeping sickness. The results identify 2-propanol as a candidate for an environmentally friendly and practical tsetse attractant. Taken together, this work characterizes the olfactory system of a highly distinct kind of fly, and it provides an approach to identifying new agents for controlling the fly and the devastating diseases that it carries.


Asunto(s)
Receptores Odorantes/genética , Atractivos Sexuales/genética , Olfato/genética , Tripanosomiasis Africana/genética , 2-Propanol/química , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/parasitología , Humanos , Aceites/química , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/parasitología , Atractivos Sexuales/química , Trypanosoma/genética , Trypanosoma/patogenicidad , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/genética , Moscas Tse-Tse/patogenicidad
15.
PLoS Pathog ; 15(2): e1007470, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817773

RESUMEN

Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.


Asunto(s)
Trypanosoma brucei brucei/patogenicidad , Trypanosoma congolense/patogenicidad , Tripanosomiasis Africana/prevención & control , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Adulto , África del Sur del Sahara , Animales , Anopheles/microbiología , Enterobacteriaceae , Femenino , Humanos , Masculino , Mosquitos Vectores/microbiología , Mosquitos Vectores/parasitología , Simbiosis , Tripanosomiasis Africana/metabolismo , Tripanosomiasis Africana/microbiología , Tripanosomiasis Africana/parasitología
16.
BMC Microbiol ; 18(Suppl 1): 150, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470176

RESUMEN

The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program 'Enhancing Vector Refractoriness to Trypanosome Infection', in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host's immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.


Asunto(s)
Interacciones Microbiota-Huesped/inmunología , Simbiosis/inmunología , Moscas Tse-Tse/microbiología , Gorgojos/microbiología , Animales , Evolución Biológica , Enterobacteriaceae/inmunología , Control de Plagas , Moscas Tse-Tse/inmunología , Gorgojos/inmunología , Wigglesworthia/inmunología , Wolbachia/inmunología
17.
BMC Microbiol ; 18(Suppl 1): 146, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470178

RESUMEN

BACKGROUND: The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse's bacterial microbiota impacts many aspects of the fly's physiology. However, little is known about the structure of tsetse's midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. RESULTS: Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse's obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. CONCLUSIONS: The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Insectos Vectores/microbiología , Trypanosoma/fisiología , Moscas Tse-Tse/microbiología , Animales , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/parasitología , Kenia , Simbiosis , Moscas Tse-Tse/parasitología , Uganda
18.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470182

RESUMEN

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Asunto(s)
Insectos Vectores/fisiología , Simbiosis/genética , Moscas Tse-Tse/parasitología , Animales , Femenino , Control de Insectos/métodos , Control de Insectos/organización & administración , Insectos Vectores/parasitología , Microbiota , Trypanosoma/genética , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/fisiología
19.
BMC Microbiol ; 18(Suppl 1): 145, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470188

RESUMEN

BACKGROUND: Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host's nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography - mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies. RESULTS: All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays. CONCLUSIONS: While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.


Asunto(s)
Antibacterianos/farmacología , Hidrocarburos/análisis , Proteínas de Insectos/química , Microbiota/efectos de los fármacos , Conducta Sexual Animal , Moscas Tse-Tse/fisiología , Ampicilina/farmacología , Animales , Femenino , Proteínas de Insectos/efectos de la radiación , Masculino , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/efectos de la radiación , Simbiosis/efectos de los fármacos , Tetraciclina/farmacología , Moscas Tse-Tse/efectos de la radiación
20.
Parasit Vectors ; 11(1): 380, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970164

RESUMEN

BACKGROUND: The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T. congolense's developmental program within tsetse are largely unknown due to considerable challenges with obtaining sufficient parasite cells to perform molecular studies. METHODS: In this study, we used RNA-seq to profile T. congolense gene expression during development in two distinct tsetse tissues, the cardia and proboscis. Indirect immunofluorescent antibody test (IFA) and confocal laser scanning microscope was used to localize the expression of a putative protein encoded by the hypothetical protein (TcIL3000_0_02370). RESULTS: Consistent with current knowledge, genes coding several variant surface glycoproteins (including metacyclic specific VSGs), and the surface coat protein, congolense epimastigote specific protein, were upregulated in parasites in the proboscis (PB-parasites). Additionally, our results indicate that parasites in tsetse's cardia (C-parasites) and PB employ oxidative phosphorylation and amino acid metabolism for energy. Several genes upregulated in C-parasites encoded receptor-type adenylate cyclases, surface carboxylate transporter family proteins (or PADs), transport proteins, RNA-binding proteins and procyclin isoforms. Gene ontology analysis of products of genes upregulated in C-parasites showed enrichment of terms broadly associated with nucleotides, microtubules, cell membrane and its components, cell signaling, quorum sensing and several transport activities, suggesting that the parasites colonizing the cardia may monitor their environment and regulate their density and movement in this tissue. Additionally, cell surface protein (CSP) encoding genes associated with the Fam50 'GARP', 'iii' and 'i' subfamilies were also significantly upregulated in C-parasites, suggesting that they are important for the long non-dividing trypomastigotes to colonize tsetse's cardia. The putative products of genes that were upregulated in PB-parasites were linked to nucleosomes, cytoplasm and membrane-bound organelles, which suggest that parasites in this niche undergo cell division in line with prior findings. Most of the CSPs upregulated in PB-parasites were hypothetical, thus requiring further functional characterization. Expression of one such hypothetical protein (TcIL3000_0_02370) was analyzed using immunofluorescence and confocal laser scanning microscopy, which together revealed preferential expression of this protein on the entire surface coat of T. congolense parasite stages that colonize G. m. morsitans' proboscis. CONCLUSION: Collectively, our results provide insight into T. congolense gene expression profiles in distinct niches within the tsetse vector. Our results show that the hypothetical protein TcIL3000_0_02370, is expressed on the entire surface of the trypanosomes inhabiting tsetse's proboscis. We discuss our results in terms of their relevance to disease transmission processes.


Asunto(s)
Transcriptoma , Trypanosoma congolense/genética , Trypanosoma congolense/fisiología , Moscas Tse-Tse/parasitología , África del Sur del Sahara/epidemiología , Animales , Perfilación de la Expresión Génica , Insectos Vectores/parasitología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Análisis de Secuencia de ARN , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...