Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comp Med ; 67(2): 157-164, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381316

RESUMEN

Diarrheal disease is the second leading cause of death in children younger than 5 y, and the most common cause of acute watery diarrhea in young children worldwide is rotaviral infection. Medicines to specifically reduce diarrhea would be a desirable adjunctive treatment to supportive fluid therapy to decrease the mortality rate of diarrheal diseases. In this study, we evaluated the efficacy of an antisecretory drug, racecadotril, in treating human rotavirus (HRV)-induced diarrhea in a neonatal gnotobiotic pig model. In total, 27 gnotobiotic pigs were randomly assigned (n = 9 per group) to receive either racecadotril, chlorpromazine (positive-control drug), or PBS (mock treatment) after inoculation with HRV. Pigs were weighed daily and rectal swabs were collected to determine fecal consistency scores and virus shedding. Rotaviral infection was confirmed by ELISA and cell culture immunofluorescence. Overall, the racecadotril-treated pigs had less severe illness than either the chlorpromazine- or mock-treated groups; this conclusion was supported by the lower fecal-consistency scores, shorter duration of diarrhea, and significant gain in body weight during the course of the study of the racecadotril-treated pigs. Through its influence on decreasing intestinal hypersecretion, racecadotril was better able to control the clinical signs of rotaviral infection in the gnotobiotic pigs. These results lend support for using racecadotril as a treatment for rotaviral diarrhea.


Asunto(s)
Antidiarreicos/uso terapéutico , Diarrea/tratamiento farmacológico , Infecciones por Rotavirus/tratamiento farmacológico , Tiorfan/análogos & derivados , Animales , Diarrea/virología , Evaluación Preclínica de Medicamentos , Rotavirus , Sus scrofa , Tiorfan/uso terapéutico , Pérdida de Peso/efectos de los fármacos
2.
Gut Pathog ; 8: 51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826359

RESUMEN

BACKGROUND: Rotavirus vaccines have poor efficacy in infants from low- and middle-income countries. Gut microbiota is thought to influence the immune response to oral vaccines. Thus, we developed a gnotobiotic (Gn) pig model of enteric dysbiosis to study the effects of human gut microbiota (HGM) on immune responses to rotavirus vaccination, and the effects of rotavirus challenge on the HGM by colonizing Gn pigs with healthy HGM (HHGM) or unhealthy HGM (UHGM). The UHGM was from a Nicaraguan infant with a high enteropathy score (ES) and no seroconversion following administration of oral rotavirus vaccine, while the converse was characteristic of the HHGM. Pigs were vaccinated, a subset was challenged, and immune responses and gut microbiota were evaluated. RESULTS: Significantly more rotavirus-specific IFN-γ producing T cells were in the ileum, spleen, and blood of HHGM than those in UHGM pigs after three vaccine doses, suggesting HHGM induces stronger cell-mediated immunity than UHGM. There were significant correlations between multiple Operational Taxonomic Units (OTUs) and frequencies of IFN-γ producing T cells at the time of challenge. There were significant positive correlations between Collinsella and CD8+ T cells in blood and ileum, as well as CD4+ T cells in blood, whereas significant negative correlations between Clostridium and Anaerococcus, and ileal CD8+ and CD4+ T cells. Differences in alpha diversity and relative abundances of OTUs were detected between the groups both before and after rotavirus challenge. CONCLUSION: Alterations in microbiome diversity and composition along with correlations between certain microbial taxa and T cell responses warrant further investigation into the role of the gut microbiota and certain microbial species on enteric immunity. Our results support the use of HGM transplanted Gn pigs as a model of human dysbiosis during enteric infection, and oral vaccine responses.

3.
Front Microbiol ; 7: 1699, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853451

RESUMEN

Probiotics have been recognized as vaccine adjuvants and therapeutic agents to treat acute gastroenteritis in children. We previously showed that rice bran (RB) reduced human rotavirus diarrhea in gnotobiotic pigs. Human noroviruses (HuNoVs) are the major pathogens causing non-bacterial acute gastroenteritis worldwide. In this study, Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle 1917 (EcN) were first screened for their ability to bind HuNoV P particles and virions derived from clinical samples containing HuNoV genotype GII.3 and GII.4, then the effects of LGG+EcN and RB on HuNoV infection and diarrhea were investigated using the gnotobiotic pig model. While LGG+EcN colonization inhibited HuNoV shedding, probiotic cocktail regimens in which RB feeding started 7 days prior to or 1 day after viral inoculation in the LGG+EcN colonized gnotobiotic pigs exhibited high protection against HuNoV diarrhea and shedding, characterized by significantly reduced incidence (89 versus 20%) and shorter mean duration of diarrhea (2.2 versus 0.2 days), as well as shorter mean duration of virus shedding (3.2 versus 1.0 days). In both probiotic cocktail groups, the diarrhea reduction rates were 78% compared with the control group, and diarrhea severity was reduced as demonstrated by the significantly lower cumulative fecal scores. The high protective efficacy of the probiotic cocktail regimens was attributed to stimulation of IFN-γ+ T cell responses, increased production of intestinal IgA and IgG, and maintenance of healthy intestinal morphology (manifested as longer villi compared with the control group). Therefore, probiotic cocktail regimens containing LGG+EcN and RB may represent highly efficacious strategies to prevent and treat HuNoV gastroenteritis, and potentially other human enteric pathogens.

4.
Sci Rep ; 6: 25017, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27113278

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 10(4) genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization.


Asunto(s)
Infecciones por Caliciviridae/sangre , Enterobacter cloacae/fisiología , Gastroenteritis/virología , Norovirus/patogenicidad , Animales , Linfocitos B/microbiología , Linfocitos B/virología , Sangre/microbiología , Sangre/virología , Infecciones por Caliciviridae/microbiología , Gastroenteritis/sangre , Gastroenteritis/microbiología , Genoma Viral , Vida Libre de Gérmenes , Humanos , Intestinos/microbiología , Intestinos/virología , Norovirus/genética , Sus scrofa , Porcinos , Carga Viral , Esparcimiento de Virus
5.
Sci Rep ; 6: 25222, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118081

RESUMEN

Application of genetically engineered (GE) large animals carrying multi-allelic modifications has been hampered by low efficiency in production and extended gestation period compared to rodents. Here, we rapidly generated RAG2/IL2RG double knockout pigs using direct injection of CRISPR/Cas9 system into developing embryos. RAG2/IL2RG deficient pigs were immunodeficient, characterized by depletion of lymphocytes and either absence of or structurally abnormal immune organs. Pigs were maintained in gnotobiotic facility and evaluated for human norovirus (HuNoV) infection. HuNoV shedding lasted for 16 days in wild type pigs, compared to 27 days (until the end of trials) in RAG2/IL2RG deficient pigs. Additionally, higher HuNoV titers were detected in intestinal tissues and contents and in blood, indicating increased and prolonged HuNoV infection in RAG2/IL2RG deficient pigs and the importance of lymphocytes in HuNoV clearance. These results suggest that GE immunodeficient gnotobiotic pigs serve as a novel model for biomedical research and will facilitate HuNoV studies.


Asunto(s)
Infecciones por Caliciviridae/virología , Proteínas de Unión al ADN/genética , Subunidad gamma Común de Receptores de Interleucina/genética , Norovirus/fisiología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/virología , Animales , Infecciones por Caliciviridae/sangre , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Ingeniería Genética , Vida Libre de Gérmenes , Humanos , Intestinos/virología , Inmunodeficiencia Combinada Grave/sangre , Porcinos , Carga Viral , Esparcimiento de Virus
6.
Viral Immunol ; 29(2): 112-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26824402

RESUMEN

Genetically modified pigs have become available recently. In this study, we established the gnotobiotic pig model of human rotavirus (HRV) infection using cloned pigs with homozygous disruption in the gene encoding immunoglobulin heavy chain (HCKO), which totally impairs B-cell development. To clarify importance of B cells and cytotoxic T cells in rotavirus immunity, CD8 cells in a subset of the pigs were depleted by injecting antipig CD8 antibodies and the immune phenotypes of all pigs were examined. HCKO pigs, CD8 cell-depleted HCKO pigs, and wild-type (WT) pigs were vaccinated with an attenuated HRV vaccine and challenged with virulent HRV. Protection against HRV infection and diarrhea was assessed postchallenge and detailed T-cell subset responses were determined pre- and postchallenge. Significantly longer duration of virus shedding was seen in vaccinated HCKO pigs than in WT pigs, indicating the importance of B cells in vaccine-induced protective immunity. Vaccinated HCKO/CD8(-) pigs shed significantly higher number of infectious virus than WT pigs and non-CD8-depleted HCKO pigs, indicating the importance of CD8 T cells in controlling virus replication. Therefore, both B cells and CD8 T cells play an important role in the protection against rotavirus infection. HCKO and HCKO/CD8(-) pigs did not differ significantly in diarrhea and virus shedding postchallenge; increased CD4 and CD8(-) γδ T-cell responses probably compensated partially for the lack of CD8 T cells. This study demonstrated that HCKO pigs can serve as a valuable model for dissection of protective immune responses against viral infections and diseases.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/inmunología , Inmunodeficiencia Combinada Grave , Animales , Animales Modificados Genéticamente , Técnicas de Inactivación de Genes , Procedimientos de Reducción del Leucocitos , Infecciones por Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Porcinos
7.
Sci Rep ; 5: 15004, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26459937

RESUMEN

Previously, we showed that rice bran (RB) was able to reduce human rotavirus (HRV) diarrhea in gnotobiotic pigs. Here, we investigated its effect on the growth of diarrhea-reducing probiotic Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle (EcN), and the resulting effects on HRV diarrhea, gut epithelial health, permeability and innate immune responses during virulent HRV challenge. On 3, 5, and 7 days of age pigs were inoculated with 2 × 10(4) colony-forming-units LGG+EcN to initiate colonization. Daily RB supplementation (replacing 10% calorie intake) was started at 5 days of age and continued until euthanasia. A subset of pigs in each group was challenged orally with 10(5) focus-forming-units of virulent HRV at 33 days of age. RB completely prevented HRV diarrhea in LGG+EcN colonized pigs. RB significantly promoted the growth of both probiotic strains in the gut (~5 logs) and increased the body-weight-gain at 4-5 weeks of age compared to non-RB group. After HRV challenge, RB-fed pigs had significantly lower ileal mitotic index and villus width, and significantly increased intestinal IFN-γ and total IgA levels compared to non-RB group. Therefore, RB plus LGG+EcN colonization may represent a highly effective therapeutic approach against HRV and potentially a variety of other diarrhea-inducing enteric pathogens.


Asunto(s)
Diarrea/inmunología , Diarrea/virología , Fibras de la Dieta/administración & dosificación , Inmunidad Innata , Oryza/química , Probióticos , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Rotavirus/fisiología , Animales , Peso Corporal , Diarrea/terapia , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina A Secretora/inmunología , Interferón gamma/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Permeabilidad , Infecciones por Rotavirus/terapia , Porcinos , Esparcimiento de Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA